ИНКРЕТИНОВЫЙ ОТВЕТ НА ПЕРОРАЛЬНОЕ ПОСТУПЛЕНИЕ ХЛОРИДА НАТРИЯ И ВОДЫ У КРЫС

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Глюкагоноподобный пептид-1 (ГПП-1) и глюкозозависимый инсулинотропный полипептид (ГИП) — это инкретиновые гормоны, которые регулируют метаболизм и синергично усиливают секрецию инсулина. При этом их возможная роль в регуляции водно-электролитного обмена остается недостаточно изученной. Настоящее исследование было направлено на оценку роли ГИП в регуляции водно-электролитного баланса в сравнении с установленными почечными эффектами ГПП-1 у млекопитающих и человека. Эксперименты проведены на самках крыс Вистар с использованием нагрузочных проб: пероральное введение воды и 50% раствора глюкозы, пероральное или внутрибрюшинное введение 2.5% раствора NaCl. Определяли осмоляльность, концентрацию глюкозы, ионов натрия, инкретинов, инсулина и глюкагона в крови, оценивали диурез, экскрецию ионов натрия почками и клиренс осмотически свободной воды. При поступлении глюкозы концентрация ГИП увеличивалась более чем в пять раз, сопровождаясь ростом уровня ГПП-1 и инсулина. При поступлении воды или NaCl секреция ГИП не изменялась, тогда как уровень ГПП-1 возрастал в обоих случаях. Через 15 минут после перорального введения раствора хлорида натрия концентрация ГПП-1 возрастала в 1.8 раза. Экзогенный ГПП-1 повышал клиренс осмотически свободной воды после водной нагрузки и усиливал натрийурез после солевой нагрузки. Введение ГИП не оказывало значимого влияния на выведение избытка воды и экскрецию натрия после соответствующих нагрузочных проб. Таким образом, исследование демонстрирует функциональную дивергенцию инкретинов и подчеркивает специализированную роль ГПП-1, но не ГИП, в регуляции функции почек и водно-электролитного гомеостаза.

Об авторах

Е. В Балботкина

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Санкт-Петербург, Россия

А. С Марина

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Санкт-Петербург, Россия

Е. И Шахматова

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Санкт-Петербург, Россия

А. В Кутина

Институт эволюционной физиологии и биохимии им. И.М. Сеченова РАН

Email: kutina_anna@mail.ru
Санкт-Петербург, Россия

Список литературы

  1. Nauck MA, Meier JJ (2018) Incretin hormones: Their role in health and disease. Diabetes Obes Metab 1: 5–21. https://doi.org/10.1111/dom.13129
  2. Jorsal T, Rhee NA, Pedersen J, Wahlgren CD, Mortensen B, Jepsen SL, Jelsing J, Dalbøge LS, Vilmann P, Hassan H, Hendel JW, Poulsen SS, Holst JJ, Vilsbøll T, Knop FK (2018) Enteroendocrine K and L cells in healthy and type 2 diabetic individuals. Diabetologia 61(2): 284–294. https://doi.org/10.1007/s00125-017-4450-9
  3. Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, PerezTilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30: 72–130. https://doi.org/10.1016/j.molmet.2019.09.010
  4. Marks V (2019) The early history of GIP 1969–2000: From enterogastrone to major metabolic hormone. Peptides 122: 170155. https://doi.org/10.1016/j.peptides.2019.170155
  5. Elahi D, McAloon-Dyke M, Fukagawa NK, Meneilly GS, Sclater AL, Minaker KL, Habener JF, Andersen DK (1994) The insulinotropic actions of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (7–37) in normal and diabetic subjects. Regul Pept 51(1): 63–74. https://doi.org/10.1016/0167-0115(94)90136-8
  6. Vilsbøll T, Krarup T, Madsbad S, Holst JJ (2002) Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45(8): 1111–1119. https://doi.org/10.1007/s00125-002-0878-6
  7. Chia CW, Egan JM (2020) Incretins in obesity and diabetes. Ann N Y Acad Sci 146(11): 104–126. https://doi.org/10.1111/nysa.14211
  8. Liakos A, Karagiannis T, Avgerinos I, Malandris K, Tsapas A, Bekiari E (2023) Management of type 2 diabetes in the new era. Hormones (Athens) 22(4): 677–684. https://doi.org/10.1007/s42000-023-00488-w
  9. Carraro-Lacroix LR, Malnic G, Girardi AC (2009) Regulation of Na+/H+ exchanger NHES by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297(6): F1647–F1655. https://doi.org/10.1152/ajprenal.00082.2009
  10. Crajoinas RO, Oricchio FT, Pessoa TD, Pacheco BP, Lessa LM, Malnic G, Girardi AC (2011) Mechanisms mediating the diuretic and natriuretic actions of the inertin hormone glucagon-like peptide-1. Am J Physiol Renal Physiol 301(2): F355–F363. https://doi.org/10.1152/ajprenal.00729.2010
  11. Kutina AV, Marina AS, Shakhmatova EI, Natochin YV (2013) Physiological mechanisms for the increase in renal solute-free water clearance by a glucagon-like peptide-1 mimetic. Clin Exp Pharmacol Physiol 40(8): 510–517. https://doi.org/10.1111/1440-1681.12119
  12. Gutzwiller JP, Tschopp S, Bock A, Zehnder CE, Huber AR, Kreyenbuehl M, Gutmann H, Drewe J, Henzen C, Goeke B, Beglinger C (2004) Glucagon-like peptide 1 induces natriuresis in healthy subjects and in insulin-resistant obese men. J Clin Endocrinol Metab 89(6): 3055–3061. https://doi.org/10.1210/jc.2003-031403
  13. Muskiet MHA, Tonneijck L, Smits MM, van Baar MJB, Kramer MHH, Hoorn EJ, Joles JA, van Raalte DH (2017) GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13(10): 605–628. https://doi.org/10.1038/nrneph.2017.123
  14. Asmar A, Cramon PK, Simonsen L, Asmar M, Sorensen CM, Madsbad S, Moro C, Hartmann B, Jensen BL, Holst JJ, Bülow J (2019) Extracellular Fluid Volume Expansion Uncovers a Natriuretic Action of GLP-1: A Functional GLP-1-Renal Axis in Man. J Clin Endocrinol Metab 104(7): 2509–2519. https://doi.org/10.1210/jc.2019-00004
  15. Kutina AV, Golosova DV, Marina AS, Shakhmatova EI, Natochin YV (2016) Role of Vasopressin in the Regulation of Renal Sodium Excretion: Interaction with Glucagon-Like Peptide-1. J Neuroendocrinol 28(4). https://doi.org/10.1111/jne.12367
  16. Karavashkina TA, Balbotkina EV, Marina AS, Kutina AV (2021) Role of Proglucagon Peptides in Osmoregulation. Bull Exp Biol Med 170(5): 618–622. https://doi.org/10.1007/s10517-021-05118-2
  17. Natochin YV, Kutina AV, Marina AS, Shakhmatova EI (2018) Stimulus for Glucagon-Like Peptide 1 Secretion in Rats. Dokl Biol Sci 479(1): 57–59. https://doi.org/10.1134/S0012496618020084
  18. Irwin DM (2020) Molecular evolution of GIP and Exendin and their receptors. Peptides 125: 170158. https://doi.org/10.1016/j.peptides.2019.170158
  19. Cardoso JCR, Felix RC, Costa C, Palma PFS, Canario AVM, Power DM (2018) Evolution of the glucagon-like system across fish. Gen Comp Endocrinol 264: 113–130. https://doi.org/10.1016/j.ygeen.2017.10.003
  20. Anini Y, Brubaker PL (2003) Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology 144(7): 3244–3250. https://doi.org/10.1210/en.2003-0143
  21. Hansen L, Lampert S, Mineo H, Holst JJ (2004) Neural regulation of glucagon-like peptide-1 secretion in pigs. Am J Physiol Endocrinol Metab 287(5): E939–E947. https://doi.org/10.1152/ajpendo.00197.2004
  22. Asmar A, Cramon PK, Asmar M, Simonsen L, Sorensen CM, Madsbad S, Moro C, Hartmann B, Rehfeld JF, Holst JJ, Hovind P, Jensen BL, Bulow J (2020) Increased oral sodium chloride intake in humans amplifies selectively postprandial GLP-1 but not GIP, CCK, and gastrin in plasma. Physiol Rep 8(15): e14519. https://doi.org/10.14814/phy.2.14519
  23. Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51(9): 2757–2763. https://doi.org/10.2337/diabetes.51.9.2757
  24. Guccio N, Alcaino C, Miedzybrodzka EL, SantosHernández M, Smith CA, Davison A, Bany Bakar R, Kay RG, Reimann F, Gribble FM (2025) Molecular mechanisms underlying glucose-dependent insulinotropic polypeptide secretion in human duodenal organoids. Diabetologia 68(1): 217–230. https://doi.org/10.1007/s00125-024-06293-3
  25. Anini Y, Hansotia T, Brubaker PL (2002) Muscarinic receptors control postprandial release of glucagon-like peptide-1 in vivo and in vitro studies in rats. Endocrinology 143(6): 2420–2426. https://doi.org/10.1210/endo.143.6.8840
  26. Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140(4): 1687–1694. https://doi.org/10.1210/endo.140.4.6643
  27. Veedfald S, Wu T, Bound M, Grivell J, Hartmann B, Rehfeld JF, Deacon CF, Horowitz M, Holst JJ, Rayner CK (2018) Hypersomolar Duodenal Saline Infusion Lowers Circulating Ghrelin and Stimulates Intestinal Hormone Release in Young Men. J Clin Endocrinol Metab 103(12): 4409–4418. https://doi.org/10.1210/jc.2018-00699
  28. Amouyal C, Andreelli F (2016) Increasing GLP-1 Circulating Levels by Bariatric Surgery or by GLP-1 Receptor Agonists Therapy: Why Are I,5 and the Clinical Consequences so Different? J Diabetes Res 2016: 5908656. https://doi.org/10.1155/2016/5908656

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).