Influence of apamin on the extracellularly recorded action potentials profiles of subepicardial cardiomyocytes of the rat heart in myocardial infarction
- Authors: Stepanov A.V.1, Dobretsov M.G.1, Filippov Y.A.1, Kubasov I.V.1
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Issue: Vol 60, No 4 (2024)
- Pages: 392–402
- Section: EXPERIMENTAL ARTICLES
- URL: https://journals.rcsi.science/0044-4529/article/view/270583
- DOI: https://doi.org/10.31857/S0044452924040065
- EDN: https://elibrary.ru/YQCPFG
- ID: 270583
Cite item
Abstract
The role of small-conductance Ca²⁺-activated K⁺-channels (SK channels) in the pathogenesis of cardiomyopathies of various etiologies remains poorly understood. The purpose of this work was to evaluate the effect of the blocker of SK channels, apamin, on the extracellularly recorded action potentials (eAPs) of subepicardial myocytes in the left ventricles of sham-operated rats and rats with myocardial infarction caused by ischemia-reperfusion. It was found that local delivery of the SK channel blocker apamin at a concentration of 500 nM to the eAP recording area did not affect the eAP profiles in the group of sham-operated rats but caused a significant slowdown in the repolarization time and a decrease in the afterhyperpolarization phase of eAPs in the group of rats with myocardial infarction. These data suggest that changes in the waveform of eAPs after infarction are associated with increased expression and/or activity of SK channels in subepicardial myocytes. The possible role of these channels in the structural and functional remodeling of the myocardium of the left ventricle of the heart after ischemia-reperfusion is discussed.
Full Text

About the authors
A. V. Stepanov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Author for correspondence.
Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg
M. G. Dobretsov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg
Yu. A. Filippov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg
I. V. Kubasov
Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg
References
- Hundahl LA, Sattler SM, Skibsbye L, Diness JG, Tfelt-Hansen J, Jespersen T (2017) Pharmacological blockade of small conductance Ca²⁺-activated K⁺ channels by ICA reduces arrhythmic load in rats with acute myocardial infarction. Pflugers Arch 469: 739–750. https://doi.org/10.1007/S00424-017-1962-6
- Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 55: 176–184.https://doi.org/10.1161/01.RES.55.2.176
- Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707.https://doi.org/10.1161/01.RES.60.5.700
- Tsujii E, Tanaka H, Oyamada M, Fujita K, Hamamoto T, Takamatsu T (2003) In situ visualization of the intracellular Ca²⁺ dynamics at the border of the acute myocardial infarct. Mol Cell Biochem 248: 135–139.https://doi.org/10.1023/A:1024188302849
- Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vázquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K⁺ channel in human and mouse hearts. J Biol Chem 278: 49085–49094.https://doi.org/10.1074/jbc.M307508200
- Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vázquez AE, Nilas Young J, Glatter KA, Chiamvimonvat N (2005) Differential expression of small-conductance Ca²⁺-activated K⁺ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 289: 2714–2723.https://doi.org/10.1152/AJPHEART.00534.2005
- Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, Zhang Z, Singapuri A, Albert TR, Rajagopal A V., Bond CT, Periasamy M, Adelman J, Chiamvimonvat N (2009) Ablation of a Ca²⁺-activated K⁺ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 587: 1087–1100.https://doi.org/10.1113/JPHYSIOL.2008.167718
- Tuteja D, Rafizadeh S, Timofeyev V, Wang S, Zhang Z, Li N, Mateo RK, Singapuri A, Young JN, Knowlton AA, Chiamvimonvat N (2010) Cardiac small conductance Ca²⁺-activated K⁺ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 107: 851–859.https://doi.org/10.1161/CIRCRESAHA.109.215269
- Nagy N, Szuts V, Horváth Z, Seprényi G, Farkas AS, Acsai K, Prorok J, Bitay M, Kun A, Pataricza J, Papp JG, Nánási PP, Varró A, Tóth A (2009) Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol 47: 656–663.https://doi.org/10.1016/J.YJMCC.2009.07.019
- Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-Von Der Lohe M, Lopshire JC, Ogawa M, Weiss JN, Lin SF, Ai T, Chen PS (2011) Small-Conductance Calcium-Activated Potassium Channel and Recurrent Ventricular Fibrillation in Failing Rabbit Ventricles. Circ Res 108: 971–979.https://doi.org/10.1161/CIRCRESAHA.110.238386
- Chang PC, Turker I, Lopshire JC, Masroor S, Nguyen BL, Tao W, Rubart M, Chen PS, Chen Z, Ai T (2013) Heterogeneous upregulation of apamin-sensitive potassium currents in failing human ventricles. J Am Heart Assoc 2:. https://doi.org/10.1161/JAHA.112.004713
- Bonilla IM, Long VP, Vargas-Pinto P, Wright P, Belevych A, Lou Q, Mowrey K, Yoo J, Binkley PF, Fedorov V V., Györke S, Janssen PML, Kilic A, Mohler PJ, Carnes CA (2014) Calcium-Activated Potassium Current Modulates Ventricular Repolarization in Chronic Heart Failure. PLoS One 9: e108824. https://doi.org/10.1371/JOURNAL.PONE.0108824
- Lee YS oo, Chang PC, Hsueh CH, Maruyama M, Park HW ook, Rhee KS, Hsieh YC, Shen C, Weiss JN, Chen Z, Lin SF, Chen PS (2013) Apamin-Sensitive Calcium-Activated Potassium Currents in Rabbit Ventricles with Chronic Myocardial Infarction. J Cardiovasc Electrophysiol 24: 1144–1153. https://doi.org/10.1111/JCE.12176
- Gui L, Bao Z, Jia Y, Qin X, Cheng ZJ, Zhu J, Chen QH (2013) Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca²⁺-activated K⁺ channels. Am J Physiol Heart Circ Physiol 304:.https://doi.org/10.1152/AJPHEART.00820.2011
- Kubasov IV, Stepanov AV, Panov AA, Chistyakova OV, Sukhov IB, Dobretsov MG (2021) Role of Potassium Currents in the Formation of After-Hyperpolarization Phase of Extracellular Action Potentials Recorded from the Control and Diabetic Rat Heart Ventricular Myocytes. Journal of Evolutionary Biochemistry and Physiology 2021 57:6 57: 1511–1521. https://doi.org/10.1134/S0022093021060272
- Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca²⁺-activated K⁺ channels. Pflugers Arch 441: 544–550. https://doi.org/10.1007/S004240000447
- Kuzmenkov AI, Peigneur S, Nasburg JA, Mineev KS, Nikolaev M V., Pinheiro-Junior EL, Arseniev AS, Wulff H, Tytgat J, Vassilevski AA (2022) Apamin structure and pharmacology revisited. Front Pharmacol 13: 977440. https://doi.org/10.3389/FPHAR.2022.977440
- Skibsbye L, Diness JG, Sørensen US, Hansen RS, Grunnet M (2011) The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca²⁺-activated K⁺ channels. J Cardiovasc Pharmacol 57: 672–681. https://doi.org/10.1097/FJC.0B013E318217943D
- Chang PC, Hsieh YC, Hsueh CH, Weiss JN, Lin SF, Chen PS (2013) Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm 10: 1516–1524. https://doi.org/10.1016/J.HRTHM.2013.07.003
- Stepanov AV, Dobretsov MG, Novikova EV, Filippov YuA, Kubasov IV (2023) Remodeling of Extracellularly Recorded Action Potentials of Rat Heart Subepicardial Cardiomyocytes after Ischemia Reperfusion Injury. Journal of Evolutionary Biochemistry and Physiology 2023 59:5 59: 1497–1509. https://doi.org/10.1134/S0022093023050046
- Zhang R, Han D, Li Z, Shen C, Zhang Y, Li J, Yan G, Li S, Hu B, Li J, Liu P (2018) Ginkgolide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front Pharmacol 9: 327207. https://doi.org/10.3389/FPHAR.2018.00109
- Ciuffreda MC, Tolva V, Casana R, Gnecchi M, Vanoli E, Spazzolini C, Roughan J, Calvillo L (2014) Rat Experimental Model of Myocardial Ischemia/Reperfusion Injury: An Ethical Approach to Set up the Analgesic Management of Acute Post-Surgical Pain. PLoS One 9: e95913. https://doi.org/10.1371/JOURNAL.PONE.0095913
- Murakami M, Niwa H, Kushikata T, Watanabe H, Hirota K, Ono K, Ohba T (2014) Inhalation Anesthesia Is Preferable for Recording Rat Cardiac Function Using an Electrocardiogram. Biol Pharm Bull 37: 834–839. https://doi.org/10.1248/BPB.B14-00012
- Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W (1981) Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101: 593–600. https://doi.org/10.1016/0002-8703(81)90226-X
- Kubasov I V., Stepanov A, Bobkov D, Radwanski PB, Terpilowski MA, Dobretsov M, Gyorke S (2018) Sub-cellular electrical heterogeneity revealed by loose patch recording reflects differential localization of sarcolemmal ion channels in intact rat hearts. Front Physiol 9: 309292. https://doi.org/10.3389/FPHYS.2018.00061
- Tejada T, Tan L, Torres RA, Calvert JW, Lambert JP, Zaidi M, Husain M, Berce MD, Naib H, Pejler G, Abrink M, Graham RM, Lefer DJ, Naqvi N, Husain A (2016) IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A 113: 6949–6954. https://doi.org/10.1073/PNAS.1603127113
- Shimizu Y, Nicholson CK, Lambert JP, Barr LA, Kuek N, Herszenhaut D, Tan L, Murohara T, Hansen JM, Husain A, Naqvi N, Calvert JW (2016) Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ Heart Fail 9:. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002368
- Abramochkin D V., Moiseenko LS, Kuzmin VS (2009) The effect of hydrogen sulfide on electrical activity of rat atrial myocardium. Bull Exp Biol Med 147: 683–686. https://doi.org/10.1007/s10517-009-0607-y
- Pustovit KB, Kuzmin VS, Abramochkin DV (2016) Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors. Naunyn Schmiedebergs Arch Pharmacol 389: 303–313. https://doi.org/10.1007/s00210-015-1199-x
- Rozanski GJ, Xu Z, Zhang K, Patel KP (1998) Altered K⁺ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol Heart Circ Physiol 274:. https://doi.org/10.1152/ajpheart.1998.274.1.H259
- Zhang XD, Coulibaly ZA, Chen WC, Ledford HA, Lee JH, Sirish P, Dai G, Jian Z, Chuang F, Brust-Mascher I, Yamoah EN, Chen-Izu Y, Izu LT, Chiamvimonvat N (2018) Coupling of SK channels, L-type Ca²⁺ channels, and ryanodine receptors in cardiomyocytes. Scientific Reports 2018 8:1 8: 1–13. https://doi.org/10.1038/s41598-018-22843-3
- Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. Journal of Biological Chemistry 272: 23195–23200. https://doi.org/10.1074/jbc.272.37.23195
- Bkaily G, Sculptoreanu A, Jacques D, Economos D, Menard D (1992) Apamin, a highly potent fetal L-type Ca²⁺ current blocker in single heart cells. Am J Physiol Heart Circ Physiol 262 https://doi.org/10.1152/AJPHEART.1992.262.2.H463
- Scriven DRL, Dan P, Moore EDW (2000) Distribution of Proteins Implicated in Excitation-Contraction Coupling in Rat Ventricular Myocytes. https://doi.org/10.1016/S0006-3495(00)76506-4
- Hegyi B, Bossuyt J, Griffiths LG, Shimkunas R, Coulibaly Z, Jian Z, Grimsrud KN, Sondergaard CS, Ginsburg KS, Chiamvimonvat N, Belardinelli L, Varró A, Papp JG, Pollesello P, Levijoki J, Izu LT, Boyd WD, Bányász T, Bers DM, Chen-Izu Y (2018) Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc Natl Acad Sci U S A 115: E3036–E3044. https://doi.org/10.1073/PNAS.1718211115/SUPPL_FILE/PNAS.201718211SI.PDF
- Weber CR, Piacentino V, Ginsburg KS, Houser SR, Bers DM (2002) Na+-Ca²⁺ Exchange Current and Submembrane [Ca²⁺] During the Cardiac Action Potential. Circ Res 90: 182–189. https://doi.org/10.1161/HH0202.103940
- Coulombe A, Lefevre IA, Deroubaix E, Thuringer D, Coraboeuf E (1990) Effect of 2,3-butanedione 2-monoxime on slow inward and transient outward currents in rat ventricular myocytes. J Mol Cell Cardiol 22: 921–932. https://doi.org/10.1016/0022-2828(90)90123-J
- Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na+/Ca²⁺ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132: 1317–1325. https://doi.org/10.1038/SJ.BJP.0703926
Supplementary files
