Influence of apamin on the extracellularly recorded action potentials profiles of subepicardial cardiomyocytes of the rat heart in myocardial infarction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The role of small-conductance Ca²⁺-activated K⁺-channels (SK channels) in the pathogenesis of cardiomyopathies of various etiologies remains poorly understood. The purpose of this work was to evaluate the effect of the blocker of SK channels, apamin, on the extracellularly recorded action potentials (eAPs) of subepicardial myocytes in the left ventricles of sham-operated rats and rats with myocardial infarction caused by ischemia-reperfusion. It was found that local delivery of the SK channel blocker apamin at a concentration of 500 nM to the eAP recording area did not affect the eAP profiles in the group of sham-operated rats but caused a significant slowdown in the repolarization time and a decrease in the afterhyperpolarization phase of eAPs in the group of rats with myocardial infarction. These data suggest that changes in the waveform of eAPs after infarction are associated with increased expression and/or activity of SK channels in subepicardial myocytes. The possible role of these channels in the structural and functional remodeling of the myocardium of the left ventricle of the heart after ischemia-reperfusion is discussed.

Full Text

Restricted Access

About the authors

A. V. Stepanov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg

M. G. Dobretsov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg

Yu. A. Filippov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg

I. V. Kubasov

Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Email: botanik2407@gmail.com
Russian Federation, Saint Petersburg

References

  1. Hundahl LA, Sattler SM, Skibsbye L, Diness JG, Tfelt-Hansen J, Jespersen T (2017) Pharmacological blockade of small conductance Ca²⁺-activated K⁺ channels by ICA reduces arrhythmic load in rats with acute myocardial infarction. Pflugers Arch 469: 739–750. https://doi.org/10.1007/S00424-017-1962-6
  2. Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. Circ Res 55: 176–184.https://doi.org/10.1161/01.RES.55.2.176
  3. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 60: 700–707.https://doi.org/10.1161/01.RES.60.5.700
  4. Tsujii E, Tanaka H, Oyamada M, Fujita K, Hamamoto T, Takamatsu T (2003) In situ visualization of the intracellular Ca²⁺ dynamics at the border of the acute myocardial infarct. Mol Cell Biochem 248: 135–139.https://doi.org/10.1023/A:1024188302849
  5. Xu Y, Tuteja D, Zhang Z, Xu D, Zhang Y, Rodriguez J, Nie L, Tuxson HR, Young JN, Glatter KA, Vázquez AE, Yamoah EN, Chiamvimonvat N (2003) Molecular identification and functional roles of a Ca(2+)-activated K⁺ channel in human and mouse hearts. J Biol Chem 278: 49085–49094.https://doi.org/10.1074/jbc.M307508200
  6. Tuteja D, Xu D, Timofeyev V, Lu L, Sharma D, Zhang Z, Xu Y, Nie L, Vázquez AE, Nilas Young J, Glatter KA, Chiamvimonvat N (2005) Differential expression of small-conductance Ca²⁺-activated K⁺ channels SK1, SK2, and SK3 in mouse atrial and ventricular myocytes. Am J Physiol Heart Circ Physiol 289: 2714–2723.https://doi.org/10.1152/AJPHEART.00534.2005
  7. Li N, Timofeyev V, Tuteja D, Xu D, Lu L, Zhang Q, Zhang Z, Singapuri A, Albert TR, Rajagopal A V., Bond CT, Periasamy M, Adelman J, Chiamvimonvat N (2009) Ablation of a Ca²⁺-activated K⁺ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation. J Physiol 587: 1087–1100.https://doi.org/10.1113/JPHYSIOL.2008.167718
  8. Tuteja D, Rafizadeh S, Timofeyev V, Wang S, Zhang Z, Li N, Mateo RK, Singapuri A, Young JN, Knowlton AA, Chiamvimonvat N (2010) Cardiac small conductance Ca²⁺-activated K⁺ channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 107: 851–859.https://doi.org/10.1161/CIRCRESAHA.109.215269
  9. Nagy N, Szuts V, Horváth Z, Seprényi G, Farkas AS, Acsai K, Prorok J, Bitay M, Kun A, Pataricza J, Papp JG, Nánási PP, Varró A, Tóth A (2009) Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol 47: 656–663.https://doi.org/10.1016/J.YJMCC.2009.07.019
  10. Chua SK, Chang PC, Maruyama M, Turker I, Shinohara T, Shen MJ, Chen Z, Shen C, Rubart-Von Der Lohe M, Lopshire JC, Ogawa M, Weiss JN, Lin SF, Ai T, Chen PS (2011) Small-Conductance Calcium-Activated Potassium Channel and Recurrent Ventricular Fibrillation in Failing Rabbit Ventricles. Circ Res 108: 971–979.https://doi.org/10.1161/CIRCRESAHA.110.238386
  11. Chang PC, Turker I, Lopshire JC, Masroor S, Nguyen BL, Tao W, Rubart M, Chen PS, Chen Z, Ai T (2013) Heterogeneous upregulation of apamin-sensitive potassium currents in failing human ventricles. J Am Heart Assoc 2:. https://doi.org/10.1161/JAHA.112.004713
  12. Bonilla IM, Long VP, Vargas-Pinto P, Wright P, Belevych A, Lou Q, Mowrey K, Yoo J, Binkley PF, Fedorov V V., Györke S, Janssen PML, Kilic A, Mohler PJ, Carnes CA (2014) Calcium-Activated Potassium Current Modulates Ventricular Repolarization in Chronic Heart Failure. PLoS One 9: e108824. https://doi.org/10.1371/JOURNAL.PONE.0108824
  13. Lee YS oo, Chang PC, Hsueh CH, Maruyama M, Park HW ook, Rhee KS, Hsieh YC, Shen C, Weiss JN, Chen Z, Lin SF, Chen PS (2013) Apamin-Sensitive Calcium-Activated Potassium Currents in Rabbit Ventricles with Chronic Myocardial Infarction. J Cardiovasc Electrophysiol 24: 1144–1153. https://doi.org/10.1111/JCE.12176
  14. Gui L, Bao Z, Jia Y, Qin X, Cheng ZJ, Zhu J, Chen QH (2013) Ventricular tachyarrhythmias in rats with acute myocardial infarction involves activation of small-conductance Ca²⁺-activated K⁺ channels. Am J Physiol Heart Circ Physiol 304:.https://doi.org/10.1152/AJPHEART.00820.2011
  15. Kubasov IV, Stepanov AV, Panov AA, Chistyakova OV, Sukhov IB, Dobretsov MG (2021) Role of Potassium Currents in the Formation of After-Hyperpolarization Phase of Extracellular Action Potentials Recorded from the Control and Diabetic Rat Heart Ventricular Myocytes. Journal of Evolutionary Biochemistry and Physiology 2021 57:6 57: 1511–1521. https://doi.org/10.1134/S0022093021060272
  16. Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca²⁺-activated K⁺ channels. Pflugers Arch 441: 544–550. https://doi.org/10.1007/S004240000447
  17. Kuzmenkov AI, Peigneur S, Nasburg JA, Mineev KS, Nikolaev M V., Pinheiro-Junior EL, Arseniev AS, Wulff H, Tytgat J, Vassilevski AA (2022) Apamin structure and pharmacology revisited. Front Pharmacol 13: 977440. https://doi.org/10.3389/FPHAR.2022.977440
  18. Skibsbye L, Diness JG, Sørensen US, Hansen RS, Grunnet M (2011) The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca²⁺-activated K⁺ channels. J Cardiovasc Pharmacol 57: 672–681. https://doi.org/10.1097/FJC.0B013E318217943D
  19. Chang PC, Hsieh YC, Hsueh CH, Weiss JN, Lin SF, Chen PS (2013) Apamin induces early afterdepolarizations and torsades de pointes ventricular arrhythmia from failing rabbit ventricles exhibiting secondary rises in intracellular calcium. Heart Rhythm 10: 1516–1524. https://doi.org/10.1016/J.HRTHM.2013.07.003
  20. Stepanov AV, Dobretsov MG, Novikova EV, Filippov YuA, Kubasov IV (2023) Remodeling of Extracellularly Recorded Action Potentials of Rat Heart Subepicardial Cardiomyocytes after Ischemia Reperfusion Injury. Journal of Evolutionary Biochemistry and Physiology 2023 59:5 59: 1497–1509. https://doi.org/10.1134/S0022093023050046
  21. Zhang R, Han D, Li Z, Shen C, Zhang Y, Li J, Yan G, Li S, Hu B, Li J, Liu P (2018) Ginkgolide C alleviates myocardial ischemia/reperfusion-induced inflammatory injury via inhibition of CD40-NF-κB pathway. Front Pharmacol 9: 327207. https://doi.org/10.3389/FPHAR.2018.00109
  22. Ciuffreda MC, Tolva V, Casana R, Gnecchi M, Vanoli E, Spazzolini C, Roughan J, Calvillo L (2014) Rat Experimental Model of Myocardial Ischemia/Reperfusion Injury: An Ethical Approach to Set up the Analgesic Management of Acute Post-Surgical Pain. PLoS One 9: e95913. https://doi.org/10.1371/JOURNAL.PONE.0095913
  23. Murakami M, Niwa H, Kushikata T, Watanabe H, Hirota K, Ono K, Ohba T (2014) Inhalation Anesthesia Is Preferable for Recording Rat Cardiac Function Using an Electrocardiogram. Biol Pharm Bull 37: 834–839. https://doi.org/10.1248/BPB.B14-00012
  24. Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse K, Mercier JC, Corday E, Ganz W (1981) Early phase acute myocardial infarct size quantification: Validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am Heart J 101: 593–600. https://doi.org/10.1016/0002-8703(81)90226-X
  25. Kubasov I V., Stepanov A, Bobkov D, Radwanski PB, Terpilowski MA, Dobretsov M, Gyorke S (2018) Sub-cellular electrical heterogeneity revealed by loose patch recording reflects differential localization of sarcolemmal ion channels in intact rat hearts. Front Physiol 9: 309292. https://doi.org/10.3389/FPHYS.2018.00061
  26. Tejada T, Tan L, Torres RA, Calvert JW, Lambert JP, Zaidi M, Husain M, Berce MD, Naib H, Pejler G, Abrink M, Graham RM, Lefer DJ, Naqvi N, Husain A (2016) IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A 113: 6949–6954. https://doi.org/10.1073/PNAS.1603127113
  27. Shimizu Y, Nicholson CK, Lambert JP, Barr LA, Kuek N, Herszenhaut D, Tan L, Murohara T, Hansen JM, Husain A, Naqvi N, Calvert JW (2016) Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ Heart Fail 9:. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002368
  28. Abramochkin D V., Moiseenko LS, Kuzmin VS (2009) The effect of hydrogen sulfide on electrical activity of rat atrial myocardium. Bull Exp Biol Med 147: 683–686. https://doi.org/10.1007/s10517-009-0607-y
  29. Pustovit KB, Kuzmin VS, Abramochkin DV (2016) Diadenosine tetra- and pentaphosphates affect contractility and bioelectrical activity in the rat heart via P2 purinergic receptors. Naunyn Schmiedebergs Arch Pharmacol 389: 303–313. https://doi.org/10.1007/s00210-015-1199-x
  30. Rozanski GJ, Xu Z, Zhang K, Patel KP (1998) Altered K⁺ current of ventricular myocytes in rats with chronic myocardial infarction. Am J Physiol Heart Circ Physiol 274:. https://doi.org/10.1152/ajpheart.1998.274.1.H259
  31. Zhang XD, Coulibaly ZA, Chen WC, Ledford HA, Lee JH, Sirish P, Dai G, Jian Z, Chuang F, Brust-Mascher I, Yamoah EN, Chen-Izu Y, Izu LT, Chiamvimonvat N (2018) Coupling of SK channels, L-type Ca²⁺ channels, and ryanodine receptors in cardiomyocytes. Scientific Reports 2018 8:1 8: 1–13. https://doi.org/10.1038/s41598-018-22843-3
  32. Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. Journal of Biological Chemistry 272: 23195–23200. https://doi.org/10.1074/jbc.272.37.23195
  33. Bkaily G, Sculptoreanu A, Jacques D, Economos D, Menard D (1992) Apamin, a highly potent fetal L-type Ca²⁺ current blocker in single heart cells. Am J Physiol Heart Circ Physiol 262 https://doi.org/10.1152/AJPHEART.1992.262.2.H463
  34. Scriven DRL, Dan P, Moore EDW (2000) Distribution of Proteins Implicated in Excitation-Contraction Coupling in Rat Ventricular Myocytes. https://doi.org/10.1016/S0006-3495(00)76506-4
  35. Hegyi B, Bossuyt J, Griffiths LG, Shimkunas R, Coulibaly Z, Jian Z, Grimsrud KN, Sondergaard CS, Ginsburg KS, Chiamvimonvat N, Belardinelli L, Varró A, Papp JG, Pollesello P, Levijoki J, Izu LT, Boyd WD, Bányász T, Bers DM, Chen-Izu Y (2018) Complex electrophysiological remodeling in postinfarction ischemic heart failure. Proc Natl Acad Sci U S A 115: E3036–E3044. https://doi.org/10.1073/PNAS.1718211115/SUPPL_FILE/PNAS.201718211SI.PDF
  36. Weber CR, Piacentino V, Ginsburg KS, Houser SR, Bers DM (2002) Na+-Ca²⁺ Exchange Current and Submembrane [Ca²⁺] During the Cardiac Action Potential. Circ Res 90: 182–189. https://doi.org/10.1161/HH0202.103940
  37. Coulombe A, Lefevre IA, Deroubaix E, Thuringer D, Coraboeuf E (1990) Effect of 2,3-butanedione 2-monoxime on slow inward and transient outward currents in rat ventricular myocytes. J Mol Cell Cardiol 22: 921–932. https://doi.org/10.1016/0022-2828(90)90123-J
  38. Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J (2001) Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na+/Ca²⁺ exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 132: 1317–1325. https://doi.org/10.1038/SJ.BJP.0703926

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Averaged QRST complexes of LO (a) and IR (b) rats in standard lead II and average values ​​of the amplitudes of the Q, R, S, T waves (c) for the entire sample 4 weeks after surgery (red columns – LO group (15 rats); blue columns – IR group (21 rats).

Download (187KB)
3. Fig. 2. Sections of the hearts of LO- (a) and IR-rats (b), stained with a solution of triphenyltetrazolium chloride. The dotted line indicates the boundaries of scar tissue.

Download (265KB)
4. Fig. 3. Representative examples of the eAP1 and eAP2 profiles of the LV subepicardium in rats of the LO- (a) and IR-groups (b). All responses are normalized to the value of their first and only negative peak for eAP1 (P1); P2 is the mark of the second negative peak in eAP2. The arrows indicate the AHP phase (afterhyperpolarization).

Download (206KB)
5. Fig. 4. Apamin does not affect the decline in the 1st and 2nd type of LV epicardial myocytes in the heart of LO rats.

Download (784KB)
6. Fig. 5. Apamin modulates the decline in ePP of type 1 and 2 epicardial myocytes of the left ventricle of the heart of IR-group rats.

Download (386KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».