CALCIUM-ACCUMULATING ABILITY OF RAT LIVER MITOCHONDRIA DURING HYPOTHERMIA OF VARIOUS DURATIONS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Calcium is one of the most important intracellular messengers that regulate physiological and biochemical processes in the cell. Mitochondria are able to deposit calcium ions and are involved in the regulation of the calcium signal. Hypothermic conditions in homoiothermic animals can lead to disruption of this important function of mitochondria and pathological consequences. The aim of this study is to study the effects of moderate (30°C) hypothermia of varying duration on the calcium-accumulating capacity of rat liver mitochondria. The experiments were carried out on male rats Wistar. Hypothermia was induced by external cooling of the animals in Plexiglas chambers with a jacket through which cold water circulated. Mitochondria were isolated from the liver of decapitated rats by differential centrifugation. The calcium-accumulating capacity of mitochondria was assessed by the kinetics of calcium-induced swelling of mitochondria and their calcium capacity. A study of the kinetics of calcium-induced swelling of mitochondria showed that during short-term moderate (30°C) hypothermia, the rate of swelling of mitochondria decreases, prolongation of hypothermia to 1 h contributes to a further decrease in the swelling rate, and to 3 h, its normalization. A positive correlation was found between the rate of calcium-induced swelling and the calcium capacity of mitochondria (r = 0.79). Thus, with prolonged exposure to the cold factor in rats, a number of compensatory-adaptive reactions are activated. The decrease in the rate of Ca2+ – induced swelling and calcium capacity of mitochondria at the initial stages of hypothermia may be associated with the formation of mitochondrial pores and is reversible.

Авторлар туралы

S. Khizrieva

Dagestan State University

Email: albina19764@mail.ru
Russian Federation, Republic of Dagestan, Makhachkala

R. Khalilov

Dagestan State University

Email: albina19764@mail.ru
Russian Federation, Republic of Dagestan, Makhachkala

A. Dzhafarova

Dagestan State University

Email: albina19764@mail.ru
Russian Federation, Republic of Dagestan, Makhachkala

V. Abdullaev

Dagestan State University

Email: albina19764@mail.ru
Russian Federation, Republic of Dagestan, Makhachkala

Әдебиет тізімі

  1. Vasington FD, and Murphy JV (1962) Ca ion uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation. J Biol Chem 237:2670–2677. https://doi.org/10.1016/s0021-9258(19)73805-8
  2. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta Bioenergy 1787(11):1309–1316. https://doi.org/10.1016/j.bbabio.2009.01.005
  3. Polderman KH (2009) Mechanisms of action, physiological effects, and compli-cations of hypothermia. Critical Care Med 37 (7):186–202. https://doi.org/10.1097/CCM.0b013e3181aa5241
  4. Sun YJ, Zhang ZY, Fan B, Li G-Y (2019) Neuroprotection by Therapeutic Hypothermia. Front Neurosci13. https://doi.org/10.3389/fnins.2019.00586
  5. Paal P, Brugger H, Strapazzon G (2018) Accidental hypothermia. Handbook of Clinical Neurology. 157:547–563. https://doi.org/10.1016/b978-0-444-64074-1.00
  6. Paal P, Pasquier M, Darocha T, Lechner R, Kosinski S, Wallner B, Zafren K, Brugger H (2022) Accidental Hypothermia: 2021 Update. Int J Environ Res Public Heal 19:501. https://doi.org/10.3390/ijerph19010501
  7. Søreide K (2014) Clinical and translational aspects of hypothermia in major trauma patients: from pathophysiology to prevention, prognosis and potential preservation. Injury 45(4):647–654. https://doi.org/10.1016/j.injury.2012.12.027
  8. Hakim SM, Ammar MA, Reyad MS (2018) Effect of therapeutic hypothermia on survival and neurological outcome in adults suffering cardiac arrest: a systematic review and meta-analysis. Minerva Anestesiol 84(6):720–730. https://doi.org/10.23736/S0375-9393.18.12164-X
  9. Yamada KP, Kariya T, Aikawa T, Ishikawa K (2021) Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Front Cardiovasc Med 8. https://doi.org/10.3389/fcvm.2021.642843
  10. Onose G, Anghelescu A, Blendea D, Ciobanu V, Daia C, Firan FC, Oprea M, Spinu A, Popescu C, Ionescu A, Busnatu S, Munteanu C (2022) Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int J Mol Sci 23:(907). https://doi.org/10.3390/ijms23020907
  11. Кличханов НК, Исмалова ЖГ, Астаева МД (2016) Интенсивность свободнорадикальных процессов в крови крыс при глубокой гипотермии и в ходе самосогревания. Бюл ВСНЦ СО РАМН 1(5):104–109. [Klichkhanov NK, Ismailova ZG, Astaeva MD. Intensity of free radical processes in rats’ blood while deep hypothermia and self-warming. Acta Biomed Sci 1(5):104–109. (In Russ)]. https://doi.org/10.12737/23402
  12. Alva N, Palomeque J, Carbonell T (2013) Oxidative Stress and Antioxidante Activity in Hypothermia and rewarming: can RONS Modulate the Benefical Effects of Therapeutic Hypothermia. Oxidative Med Cel Longevit 2013:20–28. https://doi.org/10.1155/2013/957054
  13. Schaible N, Han YS, Tveita T, Siecka GC (2018) Role of Superoxide Ion Formation in Hypothermia/Rewarming Induced Contractile Dysfunction in Cardiomyocytes. Cryobiology 81:57–64. https://doi.org/10.1016/j.cryobiol.2018.02.010
  14. Khalilov RA, Dzhafarova AM, Khizrieva SI, Abdullaev VR (2019) The Intensity of Free Radical Processes on Rat Liver Mitochondria under Moderate Hypothermia of Various Duration. Cell Tissue Biol 13:446–456. https://doi.org/10.1134/S1990519X1906004X
  15. Khizrieva SI, Khalilov RA, Dzhafarova AM, Abdullaev VR (2022) Antioxidant Status of Rat Liver Mitochondria under Conditions of Moderate Hypothermia of Different Duration. Bull Exp Biol Med 172(3):305–309. https://doi.org/10.1007/s10517-022-05382-w
  16. Khalilov RA, Khizrieva SI, Dzhafarova AM, Abdullaev VR (2020) The Bioenergetic characteristics of mitochondria of the rat liver at low body temperatures. Probl Biol Med Pharmaceut Chem 22(5):35–41. https://doi.org/10.29296/25877313-2019-05-07
  17. Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Letters 495(1-2):12–15. https://doi.org/10.1016/S0014-5793(01)02316-X
  18. Baranov SV, Stavrovskaya IG, Brown AM, Tyryshkin AM, Kristal BS (2008) Kinetic Model for Ca2+-induced Permeability Transition in Energized Liver Mitochondria Discriminates between Inhibitor Mechanisms. J Biol Chem 283(2):665–676. https://doi.org/10.1074/jbc.M703484200
  19. Рыбальченко ВК, Коганов ММ (1998) Структура и функции мембран. – Киев: ВШ. 312 с. [Rybalchenko VK, Koganov MM (1998) Membrane structure and functions. Kiev: VSh. 312 p. (In Russ)].
  20. Lowry DH (1951). Protein measurement with the Folinphenol reagent. J Biol Chem 193(1):265–275. https://doi.org/10.1016/s0021-9258(19)52451-6
  21. Brookes PS, Darley-Usmar VM (2004) Role of calcium and superoxide dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. Am J Physiol Heart Circ Physiol 286:39–46. https://doi.org/10.1152/ajpheart.00742.2003
  22. Marinelli F, Almagor L, Hiller R, Giladi M, Kha-nanshvili D, Faraldo-Gómez J, Kaback HR (2014) Sodium recognition by the Na+/Ca2+ exchanger in the out ward facing conformation. Proc Natl Acad Sci U S A 111:5354–5362. https://doi.org/10.1073/pnas.1415751111
  23. Tsai MF, Jiang D, Zhao L, Clapham D, Miller CJ (2014) Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1. Gen Physiol 143(1): 67–73. https://doi.org/10.1085/jgp.201311096
  24. Belosludtsev KN, Dubinin MV, Belosludtseva NV, Mironova GD (2019) Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. Biochemistry (Moscow) 84(6):593–607. https://doi.org/10.1134/s0006297919060026
  25. Petronilli V, Cola C, Massari S, Colonna R, Bernardi P (1993) Physiological effectors modify voltage sensing by the cyclo-sporin A-sensitive permeability transition pore of mitochondria. J Biol Chem 268(29):21939–21945. https://doi.org/10.1016/s0021-9258(20)80631-0
  26. Belosludtsev KN, Belosludtseva NV, Mironova GD (2005) Possible mechanism for formation and regulation of the palmitate-induced cyclosporin A-insensitive mitochondrial pore. Biochemistry (Moscow) 70(7):987–994. https://doi.org/70(7):815-21. https://doi.org/10.1007/s10541-005-0189-x
  27. Zoratti M, Szabb I (1995) The mitochondrial permeability transitions. Biochim Biophys Acta 1241(2):139–176. https://doi.org/10.1016/0304-4157(95)00003-a
  28. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cel Cardiol 46:821–831. https://doi.org/10.1016/j.yjmcc.2009.02.021
  29. Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Letters 567(1):96–102. https://doi.org/10.1016/j.febslet.2004.03.071
  30. Bernardi P, Di Lisa F (2014) The mitochondrial permeability transition pore: Molecular nature and role as a target in cardioprotection. J Mol Cel Cardiol 78:100–106. https://doi.org/10.1016/j.yjmcc.2014.09.023
  31. Batandier CC, Leverve X, Fontaine E (2004) Opening of the Mitochondrial Permeability Transition Pore Induces Reactive Oxygen Species Production at the Level of the Respiratory Chain Complex I. J Biol Chem 279(17):17197–17204. https://doi.org/10.1074/jbc.m310329200
  32. McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367:541–548. https://doi.org/10.1042/BJ20011672

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (80KB)
3.

Жүктеу (27KB)
4.

Жүктеу (59KB)

© С.И. Хизриева, Р.А. Халилов, А.М. Джафарова, В.Р. Абдуллаев, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>