DISINTEGRATION DYNAMICS OF A WATER MOLECULE IN AN INTENSE HIGH-FREQUENCY FIELD

封面

如何引用文章

详细

As result of the development of sources of intense high-frequency radiation and the improvement of techniques for detecting charged fragments, experiments on multiple ionization of inner molecular shells with the momen- tum and charges of fragmentation products being registered in coincidence have become possible. In this paper, the dynamics of the disintegration of water molecule fragments resulting from interaction with intense X-ray radiation has been studied. The charge distribution of oxygen ions was calculated, Newton diagrams were con-structed for fragments — protons and the oxygen ion — at various charge states of the latter, and the kinetic energy release was determined. Calculations were performed using the original code [1] for parameters close to the experiment [2] conducted on EuXFEL in 2021.

作者简介

A. Bibikov

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: bibikov@sinp.msu.ru
俄罗斯联邦, Moscow, 119991

S. Yudin

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: bibikov@sinp.msu.ru
俄罗斯联邦, Moscow, 119991

M. Popova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: bibikov@sinp.msu.ru
俄罗斯联邦, Moscow, 119991

M. Kiselev

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Pacific National University; School of Physics and Engineering, ITMO University

Email: bibikov@sinp.msu.ru
俄罗斯联邦, Moscow, 119991; Khabarovsk, 680035; Saint Petersburg, 197101

A. Grum-Grzhimaylo

Skobeltsyn Institute of Nuclear Physics, Moscow State University; School of Physics and Engineering, ITMO University

Email: bibikov@sinp.msu.ru
俄罗斯联邦, Moscow, 119991; Saint Petersburg, 197101

E. Gryzlova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

编辑信件的主要联系方式.
Email: bibikov@sinp.msu.ru
俄罗斯联邦, Moscow, 119991

参考

  1. A. Artemyev, A. Bibikov, V. Zayets, and I. Bodrenko, J. Chem. Phys. 123, 024103, (2005).
  2. T. Jahnke et al. Phys. Rev. X 11, 041044 (2021).
  3. B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000).
  4. B. C. Garrett et al., Chem. Rev. 105, 355 (2005).
  5. R. W. Carlson et al., Science 283, 2062 (1999).
  6. M. Blanc, D. J. Andrews, A. J. Coates, D. C. Hamilton, C. M. Jackman, X. Jia, A. Kotova, M. Morooka, H. T. Smith, and J. H. Westlake, Space Sci. Rev. 192, 237 (2015).
  7. I. G. Draganic, Radiat. Phys. Chem. 72, 181 (2005).
  8. S. Serkez, G. Geloni, S. Tomin, G. Feng, E. V. Gryzlova, A. N. Grum-Grzhimailo, and M. Meyer, J. Opt. 20, 024005 (2018).
  9. E. V. Gryzlova, M. D. Kiselev, M. M. Popova, and A. N. Grum-Grzhimailo, Phys. Rev. A 107, 013111 (2023).
  10. F. Braube, Phys. Rev. A 97, 043429 (2018).
  11. A. Sankari, C. Str˚ahlman, R. Sankari, L. Partanen, J. Laksman, J. A. Kettunen, I. F. Galvin, R. Lindh, P.-˚A. Malmqvist, and S. L. Sorensen, J. Chem. Phys. 152, 074302 (2020).
  12. H. Siegbahn, L. Asplund, and P. Kelfve, Chem. Phys. Lett. 35, 330 (1975).
  13. H. ˚Agren and O. Vahtras, J. Phys. B 26, 913 (1993).
  14. A. Moddeman, J. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971).
  15. S. W. J. Scully, Phys. Rev. A 73, 040701R (2006).
  16. Z. L. Streeter, F. L. Yip, R. R. Lucchese, B. Gervais, T. N. Rescigno, and C.W. McCurdy, Phys. Rev. A 98, 053429 (2018).
  17. D. Reedy et al., Phys. Rev. A 98, 053430 (2018).
  18. P. Wang, T. X. Carroll, T. D. Thomas, L. J. Søthre, K. J. Børve, J. Electron Spectros. Relat. Phenomena 251, 147103 (2021).
  19. L. S. Cederbaum, F. Tarantelli, A. Sgamellotti, and J. Schirmer, J. Chem. Phys. 85, 6513 (1986).
  20. M. N. Piancastelli, Eur. Phys. J. Special Topics 222, 2035 (2013).
  21. L. Inhester, C. F. Burmeister, G. Groenhof, and H. Grubmu¨ller, J. Chem. Phys. 136, 144304 (2012).
  22. R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-B¨ocking, Phys. Rep. 330, 95 (2000).
  23. M. N. Piancastelli, A. Hempelmann, F. Heiser, O. Gessner, A. Ru¨del, and U. Becker, Phys. Rev. A 59, 300 (1999).
  24. A. Sankari, C. Str˚ahlman, R. Sankari, L. Partanen, J. Laksman, J. A. Kettunen, I. F. Galv´an, R. Lindh, P.-˚A. Malmqvist, and S. L. Sorensen, J. Chem. Phys. 152, 074302 (2020).
  25. H. Fukuzawa et al., J. Chem. Phys. 150, 174306 (2019).
  26. T. Severt, Z. L. Streeter, W. Iskandar, K. A. Larsen, A. Gatton, D. Trabert, B. Jochim, B. Griffin, E. G. Champenois, M. M. Brister, D. Reedy, D. Call, R. Strom, A. L. Landers, R. D¨orner, J. B. Williams, D. S. Slaughter, R. R. Lucchese, T. Weber, C. W. McCurdy, and I. Ben-Itzhak, Nat. Commun. 13, 5146 (2022).
  27. J. Howard, M. Britton, Z. L. Streeter, C. Cheng, R. Forbes, J. L. Reynolds, F. Allum, G. A. McCracken, I. Gabalski, R. R. Lucchese, C. W. McCurdy, T. Weinacht, and P. H. Bucksbaum, Commun. Chem. 6, 81 (2023).
  28. D. Dill and J. L. Dehmer, J. Chem. Phys. 61, 692 (1974).
  29. L. Moore, M. Lysaght, L. Nikolopoulos, J. Parker, H. van der Hart, and K. Taylor, J. Mod. Opt. 58, 1132 (2011).
  30. R. R. Lucchese, K. Takatsuka, and V. McKoy, Phys. Rep. 131, 147 (1986).
  31. C. Marante, M. Klinker, I. Corral, J. GonzalezVazquez, L. Argenti, and F. Martin, J. Chem. Theory Comput. 13, 499 (2017).
  32. E. V. Tkalya, A. V. Bibikov, and I. V. Bodrenko, Phys. Rev. C 81, 024610, (2010).
  33. E. V. Tkalya, A. V. Avdeenkov, A. V. Bibikov, I. V. Bodrenko, and A. V. Nikolaev, Phys. Rev. C 86, 014608, (2012).
  34. A. V. Bibikov, A. V. Avdeenkov, I. V. Bodrenko, A. V. Nikolaev, and E. V. Tkalya, Phys. Rev. C 88, 034608, (2013).
  35. А. В. Бибиков, Г. Я. Коренман, С. Н. Юдин, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 78(1), 2310602 (2023).
  36. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
  37. K. L. Schuchardt, B. T. Didier, T. Elsethagen et al., J. Chem. Inf. Model. 47, 1045 (2007), doi: 10.1021/ci600510j
  38. B. Gervais, E. Giglio, L. Adoui, A. Cassimi, D. Duflot, and M. E. Galassi, J. Chem. Phys. 131, 024302 (2009).
  39. H. B. Pedersen et al., Phys. Rev. A 87, 013402 (2013).
  40. Л. Д. Ландау, Е. М. Лифщиц, Квантовая механика: нерелятивистская теория, Физматлит, Москва (2004).
  41. V. Y. Lunin, A. N. Grum-Grzhimailo, E. V. Gryzlova, D. O. Sinitsyn, T. E. Petrova, N. L. Lunina, N. K. Balabaev, K. B. Tereshkina, A. S. Stepanov, Y. F. Krupyanskii, Acta Cryst. D 71 , 293 (2015).
  42. Kengo Moribayashi, J. Phys. B 41, 085602 (2008).
  43. F. Herman and S. Skillman, Atomic Structure Calculations, Englewood Cliffs: Prentice-Hall Inc. (1963).
  44. J. J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables 32, 1 (1985).
  45. Sang-Kil Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402 (2011).
  46. E. Allaria, R. Appio, L. Badano et al., Nat. Phot. 6, 699 (2012).
  47. P. Finetti et al., J. Opt. 19, 114010 (2017).
  48. C. Buth, R. Beerwerth, R. Obaid, N. Berrah, L. S. Cederbaum, and S. Fritzsche, J. Phys. B 51, 055602 (2018).
  49. https://rscf.ru/en/project/23-62-10026/.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).