DISINTEGRATION DYNAMICS OF A WATER MOLECULE IN AN INTENSE HIGH-FREQUENCY FIELD

Cover Page

Cite item

Abstract

As result of the development of sources of intense high-frequency radiation and the improvement of techniques for detecting charged fragments, experiments on multiple ionization of inner molecular shells with the momen- tum and charges of fragmentation products being registered in coincidence have become possible. In this paper, the dynamics of the disintegration of water molecule fragments resulting from interaction with intense X-ray radiation has been studied. The charge distribution of oxygen ions was calculated, Newton diagrams were con-structed for fragments — protons and the oxygen ion — at various charge states of the latter, and the kinetic energy release was determined. Calculations were performed using the original code [1] for parameters close to the experiment [2] conducted on EuXFEL in 2021.

About the authors

A. V. Bibikov

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: bibikov@sinp.msu.ru
Russian Federation, Moscow, 119991

S. N. Yudin

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: bibikov@sinp.msu.ru
Russian Federation, Moscow, 119991

M. M. Popova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Email: bibikov@sinp.msu.ru
Russian Federation, Moscow, 119991

M. D. Kiselev

Skobeltsyn Institute of Nuclear Physics, Moscow State University; Pacific National University; School of Physics and Engineering, ITMO University

Email: bibikov@sinp.msu.ru
Russian Federation, Moscow, 119991; Khabarovsk, 680035; Saint Petersburg, 197101

A. N. Grum-Grzhimaylo

Skobeltsyn Institute of Nuclear Physics, Moscow State University; School of Physics and Engineering, ITMO University

Email: bibikov@sinp.msu.ru
Russian Federation, Moscow, 119991; Saint Petersburg, 197101

E. V. Gryzlova

Skobeltsyn Institute of Nuclear Physics, Moscow State University

Author for correspondence.
Email: bibikov@sinp.msu.ru
Russian Federation, Moscow, 119991

References

  1. A. Artemyev, A. Bibikov, V. Zayets, and I. Bodrenko, J. Chem. Phys. 123, 024103, (2005).
  2. T. Jahnke et al. Phys. Rev. X 11, 041044 (2021).
  3. B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000).
  4. B. C. Garrett et al., Chem. Rev. 105, 355 (2005).
  5. R. W. Carlson et al., Science 283, 2062 (1999).
  6. M. Blanc, D. J. Andrews, A. J. Coates, D. C. Hamilton, C. M. Jackman, X. Jia, A. Kotova, M. Morooka, H. T. Smith, and J. H. Westlake, Space Sci. Rev. 192, 237 (2015).
  7. I. G. Draganic, Radiat. Phys. Chem. 72, 181 (2005).
  8. S. Serkez, G. Geloni, S. Tomin, G. Feng, E. V. Gryzlova, A. N. Grum-Grzhimailo, and M. Meyer, J. Opt. 20, 024005 (2018).
  9. E. V. Gryzlova, M. D. Kiselev, M. M. Popova, and A. N. Grum-Grzhimailo, Phys. Rev. A 107, 013111 (2023).
  10. F. Braube, Phys. Rev. A 97, 043429 (2018).
  11. A. Sankari, C. Str˚ahlman, R. Sankari, L. Partanen, J. Laksman, J. A. Kettunen, I. F. Galvin, R. Lindh, P.-˚A. Malmqvist, and S. L. Sorensen, J. Chem. Phys. 152, 074302 (2020).
  12. H. Siegbahn, L. Asplund, and P. Kelfve, Chem. Phys. Lett. 35, 330 (1975).
  13. H. ˚Agren and O. Vahtras, J. Phys. B 26, 913 (1993).
  14. A. Moddeman, J. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer, J. Chem. Phys. 55, 2317 (1971).
  15. S. W. J. Scully, Phys. Rev. A 73, 040701R (2006).
  16. Z. L. Streeter, F. L. Yip, R. R. Lucchese, B. Gervais, T. N. Rescigno, and C.W. McCurdy, Phys. Rev. A 98, 053429 (2018).
  17. D. Reedy et al., Phys. Rev. A 98, 053430 (2018).
  18. P. Wang, T. X. Carroll, T. D. Thomas, L. J. Søthre, K. J. Børve, J. Electron Spectros. Relat. Phenomena 251, 147103 (2021).
  19. L. S. Cederbaum, F. Tarantelli, A. Sgamellotti, and J. Schirmer, J. Chem. Phys. 85, 6513 (1986).
  20. M. N. Piancastelli, Eur. Phys. J. Special Topics 222, 2035 (2013).
  21. L. Inhester, C. F. Burmeister, G. Groenhof, and H. Grubmu¨ller, J. Chem. Phys. 136, 144304 (2012).
  22. R. Dorner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and H. Schmidt-B¨ocking, Phys. Rep. 330, 95 (2000).
  23. M. N. Piancastelli, A. Hempelmann, F. Heiser, O. Gessner, A. Ru¨del, and U. Becker, Phys. Rev. A 59, 300 (1999).
  24. A. Sankari, C. Str˚ahlman, R. Sankari, L. Partanen, J. Laksman, J. A. Kettunen, I. F. Galv´an, R. Lindh, P.-˚A. Malmqvist, and S. L. Sorensen, J. Chem. Phys. 152, 074302 (2020).
  25. H. Fukuzawa et al., J. Chem. Phys. 150, 174306 (2019).
  26. T. Severt, Z. L. Streeter, W. Iskandar, K. A. Larsen, A. Gatton, D. Trabert, B. Jochim, B. Griffin, E. G. Champenois, M. M. Brister, D. Reedy, D. Call, R. Strom, A. L. Landers, R. D¨orner, J. B. Williams, D. S. Slaughter, R. R. Lucchese, T. Weber, C. W. McCurdy, and I. Ben-Itzhak, Nat. Commun. 13, 5146 (2022).
  27. J. Howard, M. Britton, Z. L. Streeter, C. Cheng, R. Forbes, J. L. Reynolds, F. Allum, G. A. McCracken, I. Gabalski, R. R. Lucchese, C. W. McCurdy, T. Weinacht, and P. H. Bucksbaum, Commun. Chem. 6, 81 (2023).
  28. D. Dill and J. L. Dehmer, J. Chem. Phys. 61, 692 (1974).
  29. L. Moore, M. Lysaght, L. Nikolopoulos, J. Parker, H. van der Hart, and K. Taylor, J. Mod. Opt. 58, 1132 (2011).
  30. R. R. Lucchese, K. Takatsuka, and V. McKoy, Phys. Rep. 131, 147 (1986).
  31. C. Marante, M. Klinker, I. Corral, J. GonzalezVazquez, L. Argenti, and F. Martin, J. Chem. Theory Comput. 13, 499 (2017).
  32. E. V. Tkalya, A. V. Bibikov, and I. V. Bodrenko, Phys. Rev. C 81, 024610, (2010).
  33. E. V. Tkalya, A. V. Avdeenkov, A. V. Bibikov, I. V. Bodrenko, and A. V. Nikolaev, Phys. Rev. C 86, 014608, (2012).
  34. A. V. Bibikov, A. V. Avdeenkov, I. V. Bodrenko, A. V. Nikolaev, and E. V. Tkalya, Phys. Rev. C 88, 034608, (2013).
  35. А. В. Бибиков, Г. Я. Коренман, С. Н. Юдин, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 78(1), 2310602 (2023).
  36. T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
  37. K. L. Schuchardt, B. T. Didier, T. Elsethagen et al., J. Chem. Inf. Model. 47, 1045 (2007), doi: 10.1021/ci600510j
  38. B. Gervais, E. Giglio, L. Adoui, A. Cassimi, D. Duflot, and M. E. Galassi, J. Chem. Phys. 131, 024302 (2009).
  39. H. B. Pedersen et al., Phys. Rev. A 87, 013402 (2013).
  40. Л. Д. Ландау, Е. М. Лифщиц, Квантовая механика: нерелятивистская теория, Физматлит, Москва (2004).
  41. V. Y. Lunin, A. N. Grum-Grzhimailo, E. V. Gryzlova, D. O. Sinitsyn, T. E. Petrova, N. L. Lunina, N. K. Balabaev, K. B. Tereshkina, A. S. Stepanov, Y. F. Krupyanskii, Acta Cryst. D 71 , 293 (2015).
  42. Kengo Moribayashi, J. Phys. B 41, 085602 (2008).
  43. F. Herman and S. Skillman, Atomic Structure Calculations, Englewood Cliffs: Prentice-Hall Inc. (1963).
  44. J. J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables 32, 1 (1985).
  45. Sang-Kil Son, L. Young, and R. Santra, Phys. Rev. A 83, 033402 (2011).
  46. E. Allaria, R. Appio, L. Badano et al., Nat. Phot. 6, 699 (2012).
  47. P. Finetti et al., J. Opt. 19, 114010 (2017).
  48. C. Buth, R. Beerwerth, R. Obaid, N. Berrah, L. S. Cederbaum, and S. Fritzsche, J. Phys. B 51, 055602 (2018).
  49. https://rscf.ru/en/project/23-62-10026/.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).