MODELING THE FORMATION PROCESSES OF STRUCTURE IN Ag–Au BIMETALLIC NANOCLUSTERS
- 作者: Gafner S.L.1, Gafner Y.Y.1, Redel' L.V.1, Goloven'ko Z.V.1
-
隶属关系:
- Katanov Khakass State University
- 期: 卷 165, 编号 4 (2024)
- 页面: 516-526
- 栏目: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/258986
- DOI: https://doi.org/10.31857/S0044451024040060
- ID: 258986
如何引用文章
详细
In the production of SERS substrates, two main approaches are used to form an array of plasmonic nanoparticles: photolithography and chemical methods, each having its advantages and disadvantages. Another possible method is thermal evaporation in vacuum, which was chosen for analysis through computer modeling. For this purpose, molecular dynamic simulation of crystallization processes of binary Ag–Au nanoparticles array was used, allowing smooth adjustment of the plasmon resonance wavelength. Three arrays of Ag–Au nanoparticles with diameter 2.0, 4.0 and 6.0 nm of various target compositions from Ag90Au10 to Ag50Au50 were created and subjected to cooling procedure from melt with different rates of thermal energy removal. During the modeling of Ag–Au nanoparticles internal structure formation, conclusions were drawn about the dependence of these processes on target composition, size, and level of thermal exposure. Based on the obtained patterns, adjustments to the technological process of creating SERS substrates using binary Ag–Au nanoparticles were proposed.
作者简介
S. Gafner
Katanov Khakass State University
Email: sgafner@rambler.ru
俄罗斯联邦, 655017, Abakan
Yu. Gafner
Katanov Khakass State University
Email: sgafner@rambler.ru
俄罗斯联邦, 655017, Abakan
L. Redel'
Katanov Khakass State University
Email: sgafner@rambler.ru
俄罗斯联邦, 655017, Abakan
Zh. Goloven'ko
Katanov Khakass State University
编辑信件的主要联系方式.
Email: sgafner@rambler.ru
俄罗斯联邦, 655017, Abakan
参考
- D. G. Gromov, S. V. Dubkov, A. I. Savitskiy, Yu. P. Shaman, A. A. Polokhin, I. A. Belogorokhov, and A. Yu. Trifonov, App. Surf. Sci. 489, 701 (2019).
- Д. Г. Громов, И. В. Мельников, А. И. Савицкий, А. Ю. Трифонов, Е. Н. Редичев, В. А. Астапенко, Письма в ЖТФ 43, 3 (2017).
- Z. Ciplak, C. Gokalp, B. Getiren, A. Yildiz, and N. Yildiz, Green Process Synth. 7, 433 (2018).
- P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982).
- M. Khan, Kh. Al-hamoud, Z. Liaqat, M. R. Shaik, S. F. Adil, M. Kuniyil, H. Z. Alkhathlan, A. AlWarthan, M. Rafiq H. Siddiqui, M. Mondeshki, W. Tremel, M. Khan, and M. N. Tahir, Nanomaterials 10, 1885 (2020).
- Th. J. A. Slater, A. Macedo, S. L. M. Schroeder, M. G. Burke, P. O’Brien, P. H. C. Camargo, and S. J. Haigh, Nano Lett. 14, 1921 (2014).
- Y. Qin, B. Wang, Y. Wu, J. Wang, X. Zong, and W. Yao, Crystals 11, 769 (2021).
- J. Haug, M. Dubiel, H. Kruth, and H. Hofmeister, J. Phys.: Conf. Ser. 190, 012124 (2009).
- M. Retout, I. Jabin, and G. Bruylants, ACS Omega 6, 19675 (2021).
- В. И. Кукушкин, А. Б. Ваньков, И. В. Кукушкин, Письма в ЖЭТФ 98, 72 (2013).
- P. Zhang, Y. Li, D. Wang, and H. Xia, Part. Part. Syst. Charact. 33, 924 (2016).
- J. Zhu, Phys.E: Low-Dimens. Syst. Nanostruct. 27, 296 (2005).
- M. Ramos, D. A. Ferrer, R. R. Chianelli, V. Correa, J. Serrano-Matos, and S. Flores, J. Nanomaterials 2011, 374096 (2011).
- A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, and R. L. Johnston, J. Chem. Phys. 122, 194308 (2005).
- L. Verlet, Phys Rev. 159, 98 (1967).
- S. H. Lee, S. S. Han, J. K. Kang, J. H. Ryu, and H. M. Lee, Surf. Sci. 602, 1433 (2008).
- Y. Qin, W.F. Pan, D.D. Yu, Y.X. Lu, W.H. Wu, and J.G. Zhou, Chem. Commun. 54, 3411 (2018).
- Y.Z. Qin, Y.X. Lu, D.D. Yu, and J.G. Zhou, Cryst. Eng. Comm. 21, 5602 (2019).
- L. Litti, J. Reguera, and F. Abajo, Nanoscale Horiz. 5, 102 (2020).
- N. Tian, Z. Y. Zhou, N. F. Yu, L. Y. Wang, and S. G. Sun, J. Amer. Chem. Soc. 132, 7580 (2010).
- J. H. Du, T. Sheng, C. Xiao, N. Tian, J. Xiao, A. Xie, S. Liu, Z. Zhou, and S. G. Sun, Chem. Commun. 22, 3236 (2017).
- G. R. Guillerm, D. N. Pablo, R. Antonio, P. Alejandro, T. Gloria, G. Jesus, B. Luis, L. Pablo, G. M. Luis, A. P. Mauricio et al., Science 358, 640 (2017).
- M. R. Langille, J. Zhang, M. L. Personick, S. Li, and C. A. Mirkin, Science 337, 954 (2012).
- Z. Cai, Y. Hu, Y. Sun, Q. Gu, P. Wu, C. Cai, and Z. Yan, Anal. Chem. 93, 1025 (2021).
- С. Л. Гафнер, Ю. Я. Гафнер, ЖЭТФ 134, 831 (2008).
- Y. Ya. Gafner, S. L. Gafner, D. A. Ryzkova, and A. V. Nomoev, Beilstein J. Nanotechnology 12, 72 (2021).
- G. P. Shevchenko, V. A. Zhuravkov, and G. V. Shishko, SN Appl. Sci. 1, 1192 (2019).
- Y. Hu, A.-Q. Zhang, H.-J. Li, D.-J. Qian, and M. Chen, Nanoscale Research Lett. 11, 209 (2016).
- Д. А. Башкова, Ю. Я. Гафнер, С. Л. Гафнер, Л. В. Редель, Фундаментальные проблемы современного материаловедения 15, 313 (2018).
- Ю. Я. Гафнер, Ж. В. Головенько, С. Л. Гафнер, ЖЭТФ 143, 288 (2013).
- Y. Gafner, S. Gafner, L. Redel, and I. Zamulin, J. Nanoparticle Research 20, 51 (2018).
- Ю. Я. Гафнер, С. Л. Гафнер, Ж. В. Головенько, Письма о материалах 10, 33 (2020).
- F. J. Abajo, Rev. Mod. Phys. 79, 1267 (2007).
- M. Rycenga, C. M. Cobley, J. Zeng, W. Li, Ch. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011).
- L. R. Owen, H. Y. Playford, H. J. Stone, and M. G. Tucker, Acta Materialia 125, 15 (2017).
- Y. H. Chui, G. Grochola, I. K. Snook, and S. P. Russo, Phys. Rev. B 75, 033404 (2007).
- T. Tanaka, Y. Totoki, A. Fujiki, N. Zettsu, Y. Miyake, M. Akai-Kasaya, A. Saito, T. Ogawa, and Y. Kuwahara, Appl. Phys. Express 4, 032105 (2011).
补充文件
