NANOCRYSTAL SHAPE ANISOTROPY DETERMINATION USING EXAFS

Capa

Citar

Resumo

The problem of non-stationary vapor-liquid nucleation is solved at a constant number of particles and a fixed cooling rate. An analytical approach to solving kinetic equations is developed, which correctly takes into account both the dependence of the work of cluster formation on its size and the non-ideality of the condensing vapor. Comparison with a similar approach based on the classical model reveals qualitative differences in the results. To assess the correctness of various approaches, simulation of the process under consideration was performed using the molecular dynamics method, the results of which are in qualitative and quantitative agreement with the proposed analytical model and are in much worse agreement with other approaches. Estimates for silicon oxide nucleation indicate that the significant difference between the equation of state of condensing vapor and the ideal gas equation may be its universal property.

Sobre autores

E. Perevoshchikov

Joint Institute of High Temperatures of the Russian Academy of Sciences

Email: dmr@ihed.ras.ru
Rússia, 125412, Moscow

D. Zhukhovitskiy

Joint Institute of High Temperatures of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: dmr@ihed.ras.ru
Rússia, 125412, Moscow

Bibliografia

  1. V. E. Bondybey, J. H. English, J. Chem. Phys. 74, 6978 (1981).
  2. T. Masubuchi, J. F. Eckhard, K. Lange et al, J.Chem. Phys. 89, 023104 (2018).
  3. S. I. Anisimov, B. S. Luk’yanchuk, Phys. Usp. 45, 293 (2002).
  4. B. Chimier, V. T. Tikhonchuk, Phys. Rev. B 79, 184107 (2009).
  5. M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013).
  6. Н. А. Иногамов, В. В. Жаховский, В. А. Хохлов,ЖЭТФ 154, 92 (2018).
  7. Ю. П. Райзер, ЖЭТФ 37, 1741 (1959).
  8. Я. Б. Зельдович, ЖЭТФ 12, 525 (1942).
  9. M. Volmer, A. Weber, Z. Phys. Chem. 199, 277 (1926).
  10. R. Becker, W. D¨oring, Ann. Phys. 416, 719 (1935).
  11. J. H. ter Horst, D. Kashchiev, J. Chem. Phys. 123, 114507 (2005).
  12. E. N. Chesnokov, L. N. Krasnoperov, J. Chem. Phys. 126, 144504 (2007).
  13. M. Horsch, J. Vrabec, H. Hasse, Phys. Rev. E 78, 011603 (2008).
  14. I. Napari, J. Julin, H. Vehkam¨aki, J. Chem. Phys.133, 154503 (2010).
  15. A. S. Abyzov, J. W. P. Schmelzer, A. A. Kovalchuket al, J. Non-Cryst. Solids 356, 2915 (2010).
  16. G. Wilemski, J. Chem. Phys. 103, 1119 (1995).
  17. R. H. Heist, H. He, J. Chem. Phys. 23, 781 (1994).
  18. E. Ruckenstein, Y. S. Djikaev, Adv. Colloid InterfaceSci. 118, 51 (2005).
  19. J. D. Gunton, J. Stat. Phys. 95, 903 (1999).
  20. D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).
  21. D. I. Zhukhovitskii, D. I. J. Chem. Phys. 144, 184701 (2016).
  22. D. I. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999).
  23. Д. И. Жуховицкий, ЖЭТФ 109, 839 (1996).
  24. Д. И. Жуховицкий, ЖЭТФ 113, 181 (1998).
  25. Д. И. Жуховицкий, ЖЭТФ 121, 396 (2002).
  26. D. I. Zhukhovitskii, J. Chem. Phys. 142, 164704 (2015).
  27. D. I. Zhukhovitskii, V. V. Zhakhovsky, J. Chem.Phys. 152, 224705 (2020).
  28. P. R. ten Wolde, D. Frenkel, J. Chem. Phys. 109, 9901 (1998).
  29. S. Toxvaerd, J. Chem. Phys. 119, 10764 (2003).
  30. K. K. Tanaka, K. Kawamura, H. Tanaka et al, J.Chem. Phys. 122, 184514 (2005).
  31. J. Wedekind, J. W¨olk, D. Reguera et al, J. Chem.Phys. 127, 154515 (2007).
  32. K. K. Tanaka, H. Tanaka, T. Yamamoto et al, J.Chem. Phys. 134, 204313 (2011).
  33. I. Napari, J. Julin, H. Vehkam¨aki, J. Chem. Phys.131, 244511 (2009).
  34. V. G. Baidakov, A. O. Tipeev, K. S. Bobrov et al, J.Chem. Phys. 132, 234505 (2010).
  35. J. Diemand, R. Ang´elil, K. K. Tanaka et al, J. Chem.Phys. 139, 074309 (2013).
  36. K. K. Tanaka, J. Diemand, R. Ang´elil et al, J. Chem.Phys. 140, 194310 (2014).
  37. R. Ang´elil, J. Diemand, K. K. Tanaka et al, J. Chem.Phys. 143, 064507 (2015).
  38. K. J. Oh, X. C. Zeng, J. Chem. Phys. 114, 2681 (2001).
  39. J. Merikanto, H. Vehkam¨aki, E. Zapadinsky, J. Chem.Phys. 121, 914 (2004).
  40. A. V. Neimark, A. Vishnyakov, J. Phys. Chem. 109, 5962 (2005).
  41. J. Merikanto, E. Zapadinsky, H. Vehkam¨aki, J. Chem.Phys. 125, 084503 (2006).
  42. Д. И. Жуховицкий, А. Г. Храпак, И. Т. Якубов,ТВТ 21, 982 (1983).
  43. Д. И. Жуховицкий, А. Г. Храпак, И. Т. Якубов,ТВТ 21, 1197 (1983).
  44. J. L. Katz, M. Blander, J. Colloid Interface Sci. 42, 496 (1973).
  45. A. Laaksonen, I. J. Ford„ M. Kulmala, Phys. Rev. E49, 5517 (1994).
  46. W. Band, J. Chem. Phys. 7, 324 (1939).
  47. W. Band, J. Chem. Phys. 7, 927 (1939).
  48. Д. И. Жуховицкий, Журнал физической химии,67, 1962 (1993).
  49. A. P. Thompson, H. M. Aktulga, R. Berger et al.,Comp. Phys. Comm. 271, 108171 (2022).
  50. S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii etal, J. Chem. Phys. 110, 8722 (1999).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).