NANOCRYSTAL SHAPE ANISOTROPY DETERMINATION USING EXAFS
- 作者: Perevoshchikov E.E.1, Zhukhovitskiy D.I.1
-
隶属关系:
- Joint Institute of High Temperatures of the Russian Academy of Sciences
- 期: 卷 165, 编号 1 (2024)
- 页面: 73-88
- 栏目: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256899
- DOI: https://doi.org/10.31857/S0044451024010085
- ID: 256899
如何引用文章
详细
The problem of non-stationary vapor-liquid nucleation is solved at a constant number of particles and a fixed cooling rate. An analytical approach to solving kinetic equations is developed, which correctly takes into account both the dependence of the work of cluster formation on its size and the non-ideality of the condensing vapor. Comparison with a similar approach based on the classical model reveals qualitative differences in the results. To assess the correctness of various approaches, simulation of the process under consideration was performed using the molecular dynamics method, the results of which are in qualitative and quantitative agreement with the proposed analytical model and are in much worse agreement with other approaches. Estimates for silicon oxide nucleation indicate that the significant difference between the equation of state of condensing vapor and the ideal gas equation may be its universal property.
作者简介
E. Perevoshchikov
Joint Institute of High Temperatures of the Russian Academy of Sciences
Email: dmr@ihed.ras.ru
俄罗斯联邦, 125412, Moscow
D. Zhukhovitskiy
Joint Institute of High Temperatures of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: dmr@ihed.ras.ru
俄罗斯联邦, 125412, Moscow
参考
- V. E. Bondybey, J. H. English, J. Chem. Phys. 74, 6978 (1981).
- T. Masubuchi, J. F. Eckhard, K. Lange et al, J.Chem. Phys. 89, 023104 (2018).
- S. I. Anisimov, B. S. Luk’yanchuk, Phys. Usp. 45, 293 (2002).
- B. Chimier, V. T. Tikhonchuk, Phys. Rev. B 79, 184107 (2009).
- M. E. Povarnitsyn, T. E. Itina, P. R. Levashov, and K. V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013).
- Н. А. Иногамов, В. В. Жаховский, В. А. Хохлов,ЖЭТФ 154, 92 (2018).
- Ю. П. Райзер, ЖЭТФ 37, 1741 (1959).
- Я. Б. Зельдович, ЖЭТФ 12, 525 (1942).
- M. Volmer, A. Weber, Z. Phys. Chem. 199, 277 (1926).
- R. Becker, W. D¨oring, Ann. Phys. 416, 719 (1935).
- J. H. ter Horst, D. Kashchiev, J. Chem. Phys. 123, 114507 (2005).
- E. N. Chesnokov, L. N. Krasnoperov, J. Chem. Phys. 126, 144504 (2007).
- M. Horsch, J. Vrabec, H. Hasse, Phys. Rev. E 78, 011603 (2008).
- I. Napari, J. Julin, H. Vehkam¨aki, J. Chem. Phys.133, 154503 (2010).
- A. S. Abyzov, J. W. P. Schmelzer, A. A. Kovalchuket al, J. Non-Cryst. Solids 356, 2915 (2010).
- G. Wilemski, J. Chem. Phys. 103, 1119 (1995).
- R. H. Heist, H. He, J. Chem. Phys. 23, 781 (1994).
- E. Ruckenstein, Y. S. Djikaev, Adv. Colloid InterfaceSci. 118, 51 (2005).
- J. D. Gunton, J. Stat. Phys. 95, 903 (1999).
- D. I. Zhukhovitskii, J. Chem. Phys. 101, 5076 (1994).
- D. I. Zhukhovitskii, D. I. J. Chem. Phys. 144, 184701 (2016).
- D. I. Zhukhovitskii, J. Chem. Phys. 110, 7770 (1999).
- Д. И. Жуховицкий, ЖЭТФ 109, 839 (1996).
- Д. И. Жуховицкий, ЖЭТФ 113, 181 (1998).
- Д. И. Жуховицкий, ЖЭТФ 121, 396 (2002).
- D. I. Zhukhovitskii, J. Chem. Phys. 142, 164704 (2015).
- D. I. Zhukhovitskii, V. V. Zhakhovsky, J. Chem.Phys. 152, 224705 (2020).
- P. R. ten Wolde, D. Frenkel, J. Chem. Phys. 109, 9901 (1998).
- S. Toxvaerd, J. Chem. Phys. 119, 10764 (2003).
- K. K. Tanaka, K. Kawamura, H. Tanaka et al, J.Chem. Phys. 122, 184514 (2005).
- J. Wedekind, J. W¨olk, D. Reguera et al, J. Chem.Phys. 127, 154515 (2007).
- K. K. Tanaka, H. Tanaka, T. Yamamoto et al, J.Chem. Phys. 134, 204313 (2011).
- I. Napari, J. Julin, H. Vehkam¨aki, J. Chem. Phys.131, 244511 (2009).
- V. G. Baidakov, A. O. Tipeev, K. S. Bobrov et al, J.Chem. Phys. 132, 234505 (2010).
- J. Diemand, R. Ang´elil, K. K. Tanaka et al, J. Chem.Phys. 139, 074309 (2013).
- K. K. Tanaka, J. Diemand, R. Ang´elil et al, J. Chem.Phys. 140, 194310 (2014).
- R. Ang´elil, J. Diemand, K. K. Tanaka et al, J. Chem.Phys. 143, 064507 (2015).
- K. J. Oh, X. C. Zeng, J. Chem. Phys. 114, 2681 (2001).
- J. Merikanto, H. Vehkam¨aki, E. Zapadinsky, J. Chem.Phys. 121, 914 (2004).
- A. V. Neimark, A. Vishnyakov, J. Phys. Chem. 109, 5962 (2005).
- J. Merikanto, E. Zapadinsky, H. Vehkam¨aki, J. Chem.Phys. 125, 084503 (2006).
- Д. И. Жуховицкий, А. Г. Храпак, И. Т. Якубов,ТВТ 21, 982 (1983).
- Д. И. Жуховицкий, А. Г. Храпак, И. Т. Якубов,ТВТ 21, 1197 (1983).
- J. L. Katz, M. Blander, J. Colloid Interface Sci. 42, 496 (1973).
- A. Laaksonen, I. J. Ford„ M. Kulmala, Phys. Rev. E49, 5517 (1994).
- W. Band, J. Chem. Phys. 7, 324 (1939).
- W. Band, J. Chem. Phys. 7, 927 (1939).
- Д. И. Жуховицкий, Журнал физической химии,67, 1962 (1993).
- A. P. Thompson, H. M. Aktulga, R. Berger et al.,Comp. Phys. Comm. 271, 108171 (2022).
- S. I. Anisimov, D. O. Dunikov, V. V. Zhakhovskii etal, J. Chem. Phys. 110, 8722 (1999).
补充文件
