Planarnye defekty v kremnii kak sposob opisaniya yavnogo angarmonizma ego vysokotemperaturnykh termodinamicheskikh svoystv

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Кремний незаменим в полупроводниковой промышленности. Понимание его высокотемпературных термодинамических свойств важно как для теории, так и для приложений. Однако первопринципное описание высокотемпературных термодинамических свойств кремния (коэффициента теплового расширения и удельной теплоемкости) все еще является неполным. Сильное отклонение его удельной теплоемкости при высоких температурах от закона Дюлонга - Пти предполагает существенный вклад эффектов ангармонизма. Показано, что ангармонизм в основном обусловлен двумя поперечными фононными модами, распространяющимися в направлениях (111) и (100), и может быть количественно описан в предположении образования определенного типа наноструктурированных плоских дефектов кристаллической структуры. Приведен расчет энергии образования этих дефектов и определен их вклад в удельную теплоемкость и коэффициент теплового расширения. Этот вклад оказывается значительно большим, чем тот, который рассчитан в квазигармоническом приближении.

Bibliografia

  1. L. Landau, L. Pitaevskii, and E. Lifshitz, Statistical Physics, Course of Theoretical Physics, Pergamon Press, Oxford (1980).
  2. C. A. Swenson, J. Phys. Chem. Ref. Data 12, 179 (1983).
  3. M. Born and E. Brody, Z. Physik 6, 132 (1921).
  4. D. C. Wallace, Phys. Rev. 139, A877 (1965).
  5. R. A. Cowley, Rep. Progr. Phys. 31, 123 (1968).
  6. D. Gerlich, B. Abeles, and R. E. Miller, J. Appl. Phys. 36, 76 (1965).
  7. P. D. Desai, J. Phys. Chem. Ref. Data 15, 967 (1986).
  8. K. Yamaguchi and K. Itagaki, J. Therm. Anal. Calorimetry 69, 1059 (2002).
  9. L. Maissel, J. Appl. Phys. 31, 211 (1960).
  10. H. Watanabe, N. Yamada, and M. Okaji, Int. J. Thermophys. 25, 221 (2004).
  11. B. N. Dutta, Phys. Stat. Sol. (b) 2, 984 (1962).
  12. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984).
  13. R. B. Roberts, J. Phys. D: Appl. Phys. 14, L163 (1981).
  14. B. Grabowski, L. Ismer, T. Hickel et al., Phys. Rev. B 79, 134106 (2009).
  15. D. S. Kim, O. Hellman, J. Herriman et al., Proc. Nat. Acad. Sci. 115, 1992 (2018).
  16. M. Kondrin, Y. Lebed, and V. Brazhkin, Diamond Relat. Mater. 110, 108114 (2020).
  17. M. V. Kondrin, Y. B. Lebed, and V. V. Brazhkin, Phys. Rev. Lett. 126, 165501 (2021).
  18. M. Kondrin, Y. Lebed, and V. Brazhkin, Phys. Stat. Sol. (b) 259, 2100463 (2022).
  19. А. И. Савватимский, С. В. Онуфриев, УФН 190, 1085 (2020)
  20. A. I. Savvatimskii and S. V. Onufriev, Phys. Usp. 63, 1015 (2020).
  21. A. Savvatimskiy, S. Onufriev, and A. Kondratyev, Carbon 98, 534 (2016).
  22. A. M. Kondratyev and A. D. Rakhel, Phys. Rev. Lett. 122, 175702 (2019).
  23. J. Vanhellemont, A. K. Swarnakar, and O. V. der Biest, ECS Transactions 64, 283 (2014).
  24. В. А. Гончарова, Е. В. Чернышева, Ф. Ф. Воронов, ФTT 25, 3680 (1983).
  25. D. S. Kim, H. L. Smith, J. L. Niedziela et al., Phys. Rev. B 91, 014307 (2015).
  26. S. Wei, C. Li, and M. Y. Chou, Phys. Rev. B 50, 14587 (1994).
  27. C. Wang, J. Gu, X. Kuang et al., Z. Naturforschung A 70 (2015); https://dx.doi.org/10.1515/zna-2015-0027.
  28. A. R. Oganov and C. W. Glass, J. Chem. Phys. 124, 244704 (2006).
  29. Q. Li, Y. Ma, A. R. Oganov et al., Phys. Rev. Lett. 102, 175506 (2009).
  30. C. He, L. Sun, C. Zhang et al., Sol. St.Commun. 152, 1560 (2012).
  31. J. P. Goss, P. R. Briddon, R. Jones et al., Phys. Rev. B 73, 115204 (2006).
  32. V. L. Deringer, G. Cs'anyi, and D. M. Proserpio, Chem. Phys. Chem. 18, 873 (2017).
  33. P. Giannozzi, O. Andreussi, T. Brumme et al., J. Phys.: Condens. Matter 29, 465901 (2017).
  34. T. Bj¨orkman, Comp. Phys.Commun. 182, 1183 (2011).
  35. L. Balogh, G. Rib'arik, and T. Ung'ar, J. Appl. Phys. 100, 023512 (2006).
  36. T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).
  37. P. C. Trivedi, H. O. Sharma, and L. S. Kothari, J. Phys. C: Sol. St. Phys. 10, 3487 (1977).
  38. В. А. Грешняков, Письма в ЖЭТФ 117, 306 (2023)
  39. V. A. Greshnyakov, JETP Lett. 117, 306 (2023).
  40. J. Men'endez and M. Cardona, Phys. Rev. B 29, 2051 (1984).
  41. A. Debernardi, S. Baroni, and E. Molinari, Phys. Rev. Lett. 75, 1819 (1995).
  42. S. Klotz, J. M. Besson, M. Braden et al., Phys. Rev. Lett. 79, 1313 (1997).
  43. В. В. Бражкин, С. Г. Ляпин, И. А. Троян и др., Письма в ЖЭТФ 72, 279 (2000)
  44. V. V. Brazhkin, S. G. Lyapin, I. A. Trojan et al., JETP Lett. 72, 195 (2000).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies