Upravlyaemaya lazernym izlucheniem spin-volnovaya interferentsiya v neregulyarnoy magnonnoy strukture

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using experimental and numerical investigation, we demonstrate laser-controlled propagation and interaction of spin waves in an irregular magnetic structure in the geometry of the Mach–Zehnder interferometer. It is shown that the use of laser radiation for heating one of the interferometer arms leads to controlled interference of a spin-wave signal in the output section. The yttrium–iron garnet film heating under the action of laser radiation is measured experimentally. Using micromagnetic modeling, the evolution of the spin-wave interference pattern under the action of laser heating of one of the interferometer arm is demonstrated. The results of this study ensure a simple solution for developing tunable spin-wave interferometers for the paradigm of the magnonic logics.

Sobre autores

A. Grachev

Laboratory “Magnetic Metamaterials,” Saratov State University

Email: andrew.a.grachev@gmail.com
410012, Saratov, Russia

A. Sadovnikov

Laboratory “Magnetic Metamaterials,” Saratov State University

Autor responsável pela correspondência
Email: andrew.a.grachev@gmail.com
410012, Saratov, Russia

Bibliografia

  1. A. Barman, G. Gubbiotti, S. Ladak et al., J. Phys. Condensed Matter 33, 413001 (2021).
  2. С.А. Никитов, А.Р. Сафин, Д.В. Калябин и др., УФН 190, 1009 (2020).
  3. V.V. Kruglyak, S.O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).
  4. G. Csaba, Á Papp, and W. Porod, Phys. Lett. A 381, 1471 (2017).
  5. A. Chumak, P. Kabos, M. Wu et al., IEEE Transactions on Magnetics 58, 0800172 (2022).
  6. G. Gubbiotti, Three-dimensional magnonics: layered, micro- and nanostructures, CRC Press (2019).
  7. A. Prabhakar and D.D. Stancil, Spin waves: Theory and applications, Springer (2009).
  8. А. Г. Гуревич, Г.А. Мелков, Магнитные колебания и волны, Физматлит, Москва (1994).
  9. Q. Wang, M. Kewenig, M. Schneider et al., Nature Electronics 3, 765 (2020).
  10. X. Wang, H. Zhang, and X. Wang, Phys. Rev. Appl. 9, 024029 (2018).
  11. Q. Wang, A.V. Chumak, and P. Pirro, Nature Commun. 12, 2636 (2021).
  12. A.V. Sadovnikov, C. S. Davies, S.V. Grishin et al., Appl.Phys. Lett. 106, 192406 (2015).
  13. H. Qin, R.B. Holländer, L. Flajšman et al., Nature Commun. 12, 2293 (2021).
  14. U. Chaudhuri, N. Singh, R. Mahendiran et al., Nanoscale 14, 12022 (2022).
  15. Á Papp, W. Porod, and G. Csaba, Nature Commun. 12, 6422 (2021).
  16. C. Holzmann, A. Ullrich, O.-T. Ciubotariu et al., ACS Appl. Nano Mater. 5, 1023 (2022).
  17. S. Rezende, R. Rodríguez-Suárez, J. L. Ortiz et al., Phys. Rev. B, 89, 134406 (2014).
  18. M. Schreier, A. Kamra, M. Weiler et al., Phys.Rev.B, 88, 094410 (2013).
  19. D. Hoppstädter and U. Netzelmann, Appl. Phys. Lett. 65, 499 (1994).
  20. S.O. Demokritov, B. Hillebrands, and A.N. Slavin, Appl.Phys. Lett. 348, 441 (2001).
  21. A.V. Sadovnikov, E.N. Beginin, S.E. Sheshukova et al., Phys.Rev.B 99, 054424 (2019).
  22. M. Vogel, A.V. Chumak, E.H. Waller et al., Nature Phys. 11, 487 (2015).
  23. O. Dzyapko, I. Borisenko, V. Demidov et al., Appl. Phys. Lett. 109, 232407 (2016).
  24. L.D. Landau and E.M. Lifschitz, Phys. Zs. Sowjet. 8, 153 (1935).
  25. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
  26. M. Sharad, D. Fan, and K. Roy, J. Appl. Phys. 114, 234906 (2013).
  27. M. Romera, P. Talatchian, S. Tsunegi et al., Nature 563, 230 (2018).
  28. D. Vodenicarevic, N. Locatelli, F.A. Araujo et al., Sci. Rep. 7, 44772 (2017).
  29. T. Brächer and P. Pirro, J. Appl. Phys. 124, 152119 (2018).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies