Upravlyaemaya lazernym izlucheniem spin-volnovaya interferentsiya v neregulyarnoy magnonnoy strukture

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using experimental and numerical investigation, we demonstrate laser-controlled propagation and interaction of spin waves in an irregular magnetic structure in the geometry of the Mach–Zehnder interferometer. It is shown that the use of laser radiation for heating one of the interferometer arms leads to controlled interference of a spin-wave signal in the output section. The yttrium–iron garnet film heating under the action of laser radiation is measured experimentally. Using micromagnetic modeling, the evolution of the spin-wave interference pattern under the action of laser heating of one of the interferometer arm is demonstrated. The results of this study ensure a simple solution for developing tunable spin-wave interferometers for the paradigm of the magnonic logics.

About the authors

A. A Grachev

Laboratory “Magnetic Metamaterials,” Saratov State University

Email: andrew.a.grachev@gmail.com
410012, Saratov, Russia

A. V Sadovnikov

Laboratory “Magnetic Metamaterials,” Saratov State University

Author for correspondence.
Email: andrew.a.grachev@gmail.com
410012, Saratov, Russia

References

  1. A. Barman, G. Gubbiotti, S. Ladak et al., J. Phys. Condensed Matter 33, 413001 (2021).
  2. С.А. Никитов, А.Р. Сафин, Д.В. Калябин и др., УФН 190, 1009 (2020).
  3. V.V. Kruglyak, S.O. Demokritov, and D. Grundler, J. Phys. D: Appl. Phys. 43, 264001 (2010).
  4. G. Csaba, Á Papp, and W. Porod, Phys. Lett. A 381, 1471 (2017).
  5. A. Chumak, P. Kabos, M. Wu et al., IEEE Transactions on Magnetics 58, 0800172 (2022).
  6. G. Gubbiotti, Three-dimensional magnonics: layered, micro- and nanostructures, CRC Press (2019).
  7. A. Prabhakar and D.D. Stancil, Spin waves: Theory and applications, Springer (2009).
  8. А. Г. Гуревич, Г.А. Мелков, Магнитные колебания и волны, Физматлит, Москва (1994).
  9. Q. Wang, M. Kewenig, M. Schneider et al., Nature Electronics 3, 765 (2020).
  10. X. Wang, H. Zhang, and X. Wang, Phys. Rev. Appl. 9, 024029 (2018).
  11. Q. Wang, A.V. Chumak, and P. Pirro, Nature Commun. 12, 2636 (2021).
  12. A.V. Sadovnikov, C. S. Davies, S.V. Grishin et al., Appl.Phys. Lett. 106, 192406 (2015).
  13. H. Qin, R.B. Holländer, L. Flajšman et al., Nature Commun. 12, 2293 (2021).
  14. U. Chaudhuri, N. Singh, R. Mahendiran et al., Nanoscale 14, 12022 (2022).
  15. Á Papp, W. Porod, and G. Csaba, Nature Commun. 12, 6422 (2021).
  16. C. Holzmann, A. Ullrich, O.-T. Ciubotariu et al., ACS Appl. Nano Mater. 5, 1023 (2022).
  17. S. Rezende, R. Rodríguez-Suárez, J. L. Ortiz et al., Phys. Rev. B, 89, 134406 (2014).
  18. M. Schreier, A. Kamra, M. Weiler et al., Phys.Rev.B, 88, 094410 (2013).
  19. D. Hoppstädter and U. Netzelmann, Appl. Phys. Lett. 65, 499 (1994).
  20. S.O. Demokritov, B. Hillebrands, and A.N. Slavin, Appl.Phys. Lett. 348, 441 (2001).
  21. A.V. Sadovnikov, E.N. Beginin, S.E. Sheshukova et al., Phys.Rev.B 99, 054424 (2019).
  22. M. Vogel, A.V. Chumak, E.H. Waller et al., Nature Phys. 11, 487 (2015).
  23. O. Dzyapko, I. Borisenko, V. Demidov et al., Appl. Phys. Lett. 109, 232407 (2016).
  24. L.D. Landau and E.M. Lifschitz, Phys. Zs. Sowjet. 8, 153 (1935).
  25. T. L. Gilbert, Phys. Rev. 100, 1243 (1955).
  26. M. Sharad, D. Fan, and K. Roy, J. Appl. Phys. 114, 234906 (2013).
  27. M. Romera, P. Talatchian, S. Tsunegi et al., Nature 563, 230 (2018).
  28. D. Vodenicarevic, N. Locatelli, F.A. Araujo et al., Sci. Rep. 7, 44772 (2017).
  29. T. Brächer and P. Pirro, J. Appl. Phys. 124, 152119 (2018).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies