THE ROLE OF MAGNETOELASTIC INTERACTIONS IN FeRh ALLOY AT ANTIFERRO-FERROMAGNETIC PHASE TRANSITION
- Authors: Kozvonin I.S.1, Tereshchenko A.A.1, Ovchinnikov A.S.1,2, Baranov N.V.2, Valiev E.Z.2
-
Affiliations:
- Institute of Natural Sciences and Mathematics, Ural Federal University
- Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 166, No 6 (2024)
- Pages: 822-833
- Section: ORDER, DISORDER AND PHASE TRANSITIONS IN CONDENSED MATTER
- URL: https://journals.rcsi.science/0044-4510/article/view/274797
- DOI: https://doi.org/10.31857/S004445102412006X
- ID: 274797
Cite item
Abstract
To explain the features of magnetic phase transitions in FeRh alloy, an effective mean-field theory is proposed that takes into account the interaction of elastic and magnetic degrees of freedom. Along with the magnetization of iron atom sublattices and mean values of the uniform compression deformation and uniaxial tension strains, the order parameter of the theory also includes internal magnetic field causing the appearance of non-zero magnetization of rhodium atoms during the antiferro-ferromagnetic phase transition. Within this theory, it is possible to calculate the temperature dependencies of total magnetization and relative volume change that agree with experimental data, and to show that the antiferro-ferromagnetic transition is a first-order phase transition. The choice of exchange interaction constants, consistent with ab initio calculations of electronic structure, reveals the leading mechanism of this transition — the renormalization of exchange interaction between nearest neighbors in the iron atom subsystem, arising when considering two-ion magnetoelastic interaction. It is shown that thermal excitation of spin waves contributes to the enhancement of uniaxial strains, reducing the cubic symmetry of the lattice to tetragonal.
About the authors
I. S. Kozvonin
Institute of Natural Sciences and Mathematics, Ural Federal University
Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620083
A. A. Tereshchenko
Institute of Natural Sciences and Mathematics, Ural Federal University
Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620083
A. S. Ovchinnikov
Institute of Natural Sciences and Mathematics, Ural Federal University; Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620083; Yekaterinburg, 620219
N. V. Baranov
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620219
E. Z. Valiev
Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620219
References
- M. Fallot, Ann. Phys.(Paris) 10, 291 (1938).
- M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939).
- J. B. Staunton, R. Banerjee, M. dos S. Dias et al., Phys. Rev. B 89, 054427 (2014).
- L. Muldawer and F. de Bergevin, J. Chem. Phys. 35, 1257 (1961).
- А. И. Захаров, А. М. Кадомцева, Р. З. Левитин и др., ЖЭТФ 46, 2003 (1964).
- N. A. Zarkevich and D. D. Jonson, Phys. Rev. B 97, 014202 (2018).
- G. Shirane, C. W. Chen, P. A. Flin et al., J. Appl. Phys. Suppl. 33, 1044 (1963).
- G. Shirane, R. Nathans, and C. W. Chen, Phys. Rev. 134, A1547 (1964).
- J. S. Couvel, J. Appl. Phys. 37, 1257 (1966).
- M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev et al., Cryogenics 32, 867 (1992).
- J. S. Kouvel and J. Hartelius, J. Appl. Phys. 33, 1343 (1962).
- M. R. Ibarra and Algarabel, Phys. Rev. B 50, 4196 (1994).
- Р. Р. Гимаев, А. А. Ваулин, А. Ф. Губкин и др., ФММ 121, 907 (2020).
- C. Kittel, Phys. Rev. 120, 335 (1960).
- C. P. Bean and D. S. Rotbell, Phys. Rev. 126, 104 (1962).
- E. Valiev, R. Gimaev, V. Zverev et al., Intermetallics 108, 81 (2019).
- M. E. Gruner, T. Hoffman, and P. Entel, Phys. Rev. B 67, 064415 (2003).
- L. M. Sandratckii and P. Navropoulos, Phys. Rev. B 83, 174408 (2011).
- S. Polesya, S. Mankovsky, D. Kodderitzsch et al., Phys. Rev. B 93, 024423 (2016).
- М. И. Куркин, А. В. Телегин, П. А. Агзамова и др., ФММ 123, 579 (2022).
- G. Ju, J. Hohlfeld, B. Bergman et al., Phys. Rev. Lett. 93, 197403 (2004).
- S. O. Mariager, F. Pressacco, G. Ingold et al., Phys. Rev. Lett. 108, 087201 (2012).
- S. Yuasa, Y. Otani, H. Miyajima et al., IEEE Trans. J. Mag. Jpn. 9 (6), 202 (1994).
- K. Nishihara, Y. Nakazawa, L. Li et al., Mater. Trans. 49, 753 (2008).
- A. S. Komlev, G. F. Cabeza, A.M. Chirkova et al. Metals 13, 1650 (2023).
- A. S. Komlev, R. A. Makarin, K. P. Skokov et al., Metall. Mater. Trans. A 54, 3683 (2023).
- Г. А. Смоленский (ред.), В. В. Леманов, Г. М. Недлин и др., Физика магнитных диэлектриков, Наука, Ленинград (1974).
- E. Callen, Phys. Rev. 139, A455 (1965).
- Л. Д. Ландау, Е. М. Лифшиц, Теория упругости, Наука, Москва (1965).
- С. В. Вонсовский, М. И. Кацнельсон, Квантовая физика твердого тела, Наука, Москва (1983).
- W. He, H. Huang, and X. Ma, Materials Lett. 195, 156 (2017).
- S. Maat, J.-U. Thiele, and E. E. Fullerton, Phys. Rev. B 72, 214432 (2005).
- J. Cao, N.T. Nam, S. Inoue et al., J. Appl. Phys. 103, 07F501 (2008).
- I. Suzuki, T. Koike, M. Itoh et al., J. Appl. Phys. 105, 07E501 (2009).
- А. И. Захаров, ФММ 24, 84 (1967).
- Задачи по термодинамике и статистической физике, под ред. П. Ландсберга, Мир, Москва (1974).
Supplementary files
