THE ROLE OF MAGNETOELASTIC INTERACTIONS IN FeRh ALLOY AT ANTIFERRO-FERROMAGNETIC PHASE TRANSITION

Cover Page

Cite item

Abstract

To explain the features of magnetic phase transitions in FeRh alloy, an effective mean-field theory is proposed that takes into account the interaction of elastic and magnetic degrees of freedom. Along with the magnetization of iron atom sublattices and mean values of the uniform compression deformation and uniaxial tension strains, the order parameter of the theory also includes internal magnetic field causing the appearance of non-zero magnetization of rhodium atoms during the antiferro-ferromagnetic phase transition. Within this theory, it is possible to calculate the temperature dependencies of total magnetization and relative volume change that agree with experimental data, and to show that the antiferro-ferromagnetic transition is a first-order phase transition. The choice of exchange interaction constants, consistent with ab initio calculations of electronic structure, reveals the leading mechanism of this transition — the renormalization of exchange interaction between nearest neighbors in the iron atom subsystem, arising when considering two-ion magnetoelastic interaction. It is shown that thermal excitation of spin waves contributes to the enhancement of uniaxial strains, reducing the cubic symmetry of the lattice to tetragonal.

About the authors

I. S. Kozvonin

Institute of Natural Sciences and Mathematics, Ural Federal University

Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620083

A. A. Tereshchenko

Institute of Natural Sciences and Mathematics, Ural Federal University

Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620083

A. S. Ovchinnikov

Institute of Natural Sciences and Mathematics, Ural Federal University; Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620083; Yekaterinburg, 620219

N. V. Baranov

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620219

E. Z. Valiev

Institute of Metal Physics, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: alexander.ovchinnikov@urfu.ru
Russian Federation, Yekaterinburg, 620219

References

  1. M. Fallot, Ann. Phys.(Paris) 10, 291 (1938).
  2. M. Fallot and R. Horcart, Rev. Sci. 77, 498 (1939).
  3. J. B. Staunton, R. Banerjee, M. dos S. Dias et al., Phys. Rev. B 89, 054427 (2014).
  4. L. Muldawer and F. de Bergevin, J. Chem. Phys. 35, 1257 (1961).
  5. А. И. Захаров, А. М. Кадомцева, Р. З. Левитин и др., ЖЭТФ 46, 2003 (1964).
  6. N. A. Zarkevich and D. D. Jonson, Phys. Rev. B 97, 014202 (2018).
  7. G. Shirane, C. W. Chen, P. A. Flin et al., J. Appl. Phys. Suppl. 33, 1044 (1963).
  8. G. Shirane, R. Nathans, and C. W. Chen, Phys. Rev. 134, A1547 (1964).
  9. J. S. Couvel, J. Appl. Phys. 37, 1257 (1966).
  10. M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev et al., Cryogenics 32, 867 (1992).
  11. J. S. Kouvel and J. Hartelius, J. Appl. Phys. 33, 1343 (1962).
  12. M. R. Ibarra and Algarabel, Phys. Rev. B 50, 4196 (1994).
  13. Р. Р. Гимаев, А. А. Ваулин, А. Ф. Губкин и др., ФММ 121, 907 (2020).
  14. C. Kittel, Phys. Rev. 120, 335 (1960).
  15. C. P. Bean and D. S. Rotbell, Phys. Rev. 126, 104 (1962).
  16. E. Valiev, R. Gimaev, V. Zverev et al., Intermetallics 108, 81 (2019).
  17. M. E. Gruner, T. Hoffman, and P. Entel, Phys. Rev. B 67, 064415 (2003).
  18. L. M. Sandratckii and P. Navropoulos, Phys. Rev. B 83, 174408 (2011).
  19. S. Polesya, S. Mankovsky, D. Kodderitzsch et al., Phys. Rev. B 93, 024423 (2016).
  20. М. И. Куркин, А. В. Телегин, П. А. Агзамова и др., ФММ 123, 579 (2022).
  21. G. Ju, J. Hohlfeld, B. Bergman et al., Phys. Rev. Lett. 93, 197403 (2004).
  22. S. O. Mariager, F. Pressacco, G. Ingold et al., Phys. Rev. Lett. 108, 087201 (2012).
  23. S. Yuasa, Y. Otani, H. Miyajima et al., IEEE Trans. J. Mag. Jpn. 9 (6), 202 (1994).
  24. K. Nishihara, Y. Nakazawa, L. Li et al., Mater. Trans. 49, 753 (2008).
  25. A. S. Komlev, G. F. Cabeza, A.M. Chirkova et al. Metals 13, 1650 (2023).
  26. A. S. Komlev, R. A. Makarin, K. P. Skokov et al., Metall. Mater. Trans. A 54, 3683 (2023).
  27. Г. А. Смоленский (ред.), В. В. Леманов, Г. М. Недлин и др., Физика магнитных диэлектриков, Наука, Ленинград (1974).
  28. E. Callen, Phys. Rev. 139, A455 (1965).
  29. Л. Д. Ландау, Е. М. Лифшиц, Теория упругости, Наука, Москва (1965).
  30. С. В. Вонсовский, М. И. Кацнельсон, Квантовая физика твердого тела, Наука, Москва (1983).
  31. W. He, H. Huang, and X. Ma, Materials Lett. 195, 156 (2017).
  32. S. Maat, J.-U. Thiele, and E. E. Fullerton, Phys. Rev. B 72, 214432 (2005).
  33. J. Cao, N.T. Nam, S. Inoue et al., J. Appl. Phys. 103, 07F501 (2008).
  34. I. Suzuki, T. Koike, M. Itoh et al., J. Appl. Phys. 105, 07E501 (2009).
  35. А. И. Захаров, ФММ 24, 84 (1967).
  36. Задачи по термодинамике и статистической физике, под ред. П. Ландсберга, Мир, Москва (1974).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).