EVOLUTION OF ELECTROMAGNETIC FIELD PHASE OPERATORS PROPERTIES IN RABI AND JAYNES-CUMMINGS MODELS
- Авторлар: Kozlovskiy A.V.1
-
Мекемелер:
- Lebedev Physical Institute of the Russian Academy of Sciences
- Шығарылым: Том 165, № 5 (2024)
- Беттер: 618-626
- Бөлім: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/259023
- DOI: https://doi.org/10.31857/S004445102405002X
- ID: 259023
Дәйексөз келтіру
Аннотация
The time evolution of mean values and dispersions of trigonometric functions of the quantum electromagnetic field phase operator interacting with a two-level atom has been studied. The field with a small number of photons is considered for various initial quantum states of the field and atom within the framework of Pegg-Barnett's Hermitian phase operator theory. The difference in phase operator evolution following from the Jaynes-Cummings theory and the Rabi model under conditions of ultrastrong atom-field coupling has been investigated. A qualitative difference between the results of the approximate Jaynes-Cummings model and the Rabi model is shown in the case of ultrastrong atom- field coupling for microscopic fields with photon numbers (n) ~ 1 for Fock and coherent initial quantum states of the field and any initial states of the atom. It is shown that in the case of coherent initial field state with large (n) > 10 under ultrastrong coupling conditions, the evolution of means and dispersions of field phase operators is characterized by a pronounced quantum effect of collapse and revival of the means and dispersions of these quantities.
Авторлар туралы
A. Kozlovskiy
Lebedev Physical Institute of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: kozlovskiyav@lebedev.ru
Ресей, 119234, Moscow
Әдебиет тізімі
- P. Forn-D´ıaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Rev. Mod. Phys. 91, 25005 (2019).
- T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hu¨mmer, E. Solano, A. Marx, and R. Gross, Nature Phys. 6, 772 (2010).
- A. Le Boit´e, Adv. Quantum Technol. 37, 1900140 (2020).
- A. F. Kockum, A. Miranowicz, S. DelLiberato, S. Savesta, and F. Nori, Nature Rev. Phys. 1, 19 (2019).
- Shuangshuang Fu, Shunlong Luo, and Yue Zhang, Quantum Inf. Proces. 20, 88 (2021).
- Jin-Sheng Peng and Gao-xiang Li, Phys. Rev. A 45, 3289 (1992).
- I. Feranchuk, A. Ivanov, Van-Hoang Le, and A. Ulyanenkov, Non-perturbative Description of Quantum Systems, Lecture Notes Phys. 894, 362 (2015).
- F. A. Wolf, M. Kollar, and D. Braak, Phys. Rev. A 85, 053817 (2012).
- Qing-Hu Chen, Tao Liu, Yu-Yu Zhang, and Ke-Lin Wang, EPL 96, 14003 (2011), www.epljournal.org, doi: 10.1209/0295-5075/96/14003.
- Jin-sheng Peng and Gao-xiang Li, Phys. Rev. A 47, 3167 (1993).
- T. Werliang, A. V. Dodonov, E. L. Duzzioni, and C. J. Villas-Boas, Phys. Rev. A 78, 053805 (2008).
- Ho Trung Dung, R. Tana´s, and A. S. Shumovsky, J. Mod. Opt. 38, 2069 (1991).
- Ho Trung Dung, R. Tanas, and A. S. Shumovsky, Opt. Commun. 79, 462 (1990).
- H. X. Meng, C. L. Chai, and Z. M. Zhang, Phys. Rev. A 45, 2131 (1992).
- A. A. Faisal El-Orany, M. H. Mahran, M. R. B. Wahiddin, and A. M. Hashim, Opt. Commun. 240, 169 (2004).
- M. H. Naderi, J. Phys. A: Math. Theor. 44, 055304 (2011).
- Qiongtao Xie, Honghua Zhong, M. T. Batchelor, and Chaohong Lee, J. Phys. A: Math. Theor. 50, 113001, (2017).
- D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).
- S. M. Barnett and D. T. Pegg, J. Phys. A 19, 3849 (1986).
- P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411 (1968).
- A. V. Kozlovskii, J. Mod. Opt. 66, 463 (2019).
- В. П. Шляйх, Квантовая оптика в фазовом пространстве, Физматлит, Москва (2005).
- J. H. Eberly, N. B. Narozhny, and J. J. Sanchez-Mondragon, Phys. Rev. Lett. 44, 1323 (1980).
- N. B. Narozhny, J. J. Sanchez-Mondragon, and J. H. Eberly, Phys. Rev. A 23, 236 (1981).
- H. I. Yoo, J. J. Sanchez-Mondragon, and J. H. Eberly, J. Phys. A 14, 1383 (1981).
- J. Eiselt and H. Risken, Phys. Rev. A 43, 346 (1991).
- А. В. Козловский, КЭ 40, 223 (2010).
Қосымша файлдар
