NANOCRYSTAL SHAPE ANISOTROPY DETERMINATION USING EXAFS

Cover Page

Cite item

Abstract

Using the set of the nanocrystals (NC) having the rectangular parallelepiped shape and a cubic crystal structure of the zinc-blende type as model system, the possibilities of determining the NC shape anisotropy using the polarized EXAFS technique were demonstrated. It was shown that the effective value of the coordination number of absorbing atoms in an NC with anisotropic shape depends on its size and the orientation of the X-ray radiation polarization vector relative to the NC surface. The effective values of the coordination numbers of the first coordination sphere of atoms in NCs having different size and surface composition were modeled. Taking into account the influence of the experimental error of the EXAFS method the possibilities of the model applicability for analysis of the real systems with NC were analyzed.

About the authors

K. A. Svit

Rzhanov institute of semiconductor physics, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: svitkirill1989@gmail.com
Russian Federation, 630090, Novosibirsk

K. S. Zhuravlev

Rzhanov institute of semiconductor physics, Siberian Branch of the Russian Academy of Sciences

Email: svitkirill1989@gmail.com
Russian Federation, 630090, Novosibirsk

References

  1. M. A. Cotta, ACS Appl. Nano Mater. 3, 4920 (2020).
  2. D. S. Abramkin and V. V. Atuchin, Nanomaterials12, 3794 (2022).
  3. W. C. Chao, T. H. Chiang, Y. C. Liu, Z. X. Huang,C. C. Liao, C. H. Chu, C. H. Wang, H. W. Tseng, W. Y. Hung, and P. T. Chou, Commun. Mater. 2, 96 (2021).
  4. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
  5. E. S. Smotkin, C. Lee, A. J. Bard, A. Campion,M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Chem. Phys. Lett. 152, 265 (1988).
  6. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
  7. P. Facci and M. P. Montana, Solid State Commun.108, 5 (1998).
  8. A. Aleksandrov, V. G. Mansurov, and K. S. Zhuravlev, Physica E 75, 309 (2016).
  9. V. G. Mansurov, Yu. G. Galittsyn, A. Yu. Nikitin,K. S. Zhuravlev, and Ph. Vennegues, Phys. Stat. Sol. (c) 3, 1548 (2006).
  10. S. Hovmoller, X. Zou, and T. E. Weirich, Adv. ImaginElectron Phys. 123, 257 (2002).
  11. A. V. Nabok, A. K. Ray, and A. K. Hassan, J. Appl.Phys. 88, 1333 (2000).
  12. T. M. Usher, D. Olds, J. Liku, and K. Page, ActaCryst. A74, 322 (2018).
  13. C. L. Farrow, C. Shi, P. Juhas, X. Peng, and S. J. L. Billinge, J. Appl. Crystallogr, 47, 561 (2014).
  14. C. Shi, E. L. Redmond, A. Mazaheripour, P. Juhas,T. F. Fuller, and S. J. L. Billinge, J. Phys. Chem. C 117, 7226 (2013).
  15. M. Khalkhali, Q. Liu, H. Zeng, and H. Zhang, Sci.Rep. 5, 14267 (2015).
  16. A. Jentys, Phys. Chem. Chem. Phys. 1, 4059 (1999).
  17. G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini,G. Leofanti, E. Groppo, and C. Lamberti, J. Phys. Chem. C 118, 4085, (2014).
  18. R. B. Gregor and F. W. Lytle, J. Catal. 63, 476, (1980).
  19. M. Shirai, T. Inoue, H. Onishi, K. Asakura, and Y. Iwasawa, J. Catal. 145, 159 (1994).
  20. C. Giansante and I. Infante, J. Phys. Chem. Lett. 8, 8209 (2017).
  21. C. J. P. Clark and W. R. Flavell, Chem. Rec. 18, 1 (2018).
  22. N. S. Marinkovic, K. Sasaki, and R. R. Adzic, J.Electrochem. Soc. 165, J3222 (2018).
  23. D. Kido and K. Asakura, Acc. Mater. Surf. Res. 5, 148 (2020).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).