ИССЛЕДОВАНИЕ АНИЗОТРОПИИ ФОРМЫ НАНОКРИСТАЛЛОВ МЕТОДОМ EXAFS-СПЕКТРОСКОПИИ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На примере модельной системы, представляющей собой множество нанокристаллов (НК), имеющих форму прямоугольного параллелепипеда и кубическую кристаллическую структуру типа цинковой обманки, продемонстрированы возможности определения анизотропии формы НК с помощью методики поляризованных спектров EXAFS. Показано, что эффективное значение координационного числа поглощающих атомов в анизотропном по форме НК зависит от его размеров и ориентации вектора поляризации рентгеновского излучения относительной поверхности НК. Смоделированы эффективные значения координационных чисел первой координационной сферы атомов в НК, имеющих разные размеры и состав поверхности. Проанализированы возможности применимости модели к анализу реальных систем с НК с учетом влияния экспериментальной погрешности метода EXAFS.

Об авторах

К. А Свит

Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук

Email: svitkirill1989@gmail.com
630090, Новосибирск, Россия

К. С Журавлев

Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук

630090, Новосибирск, Россия

Список литературы

  1. M. A. Cotta, ACS Appl. Nano Mater. 3, 4920 (2020).
  2. D. S. Abramkin and V. V. Atuchin, Nanomaterials12, 3794 (2022).
  3. W. C. Chao, T. H. Chiang, Y. C. Liu, Z. X. Huang,C. C. Liao, C. H. Chu, C. H. Wang, H. W. Tseng, W. Y. Hung, and P. T. Chou, Commun. Mater. 2, 96 (2021).
  4. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
  5. E. S. Smotkin, C. Lee, A. J. Bard, A. Campion,M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Chem. Phys. Lett. 152, 265 (1988).
  6. J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
  7. P. Facci and M. P. Montana, Solid State Commun.108, 5 (1998).
  8. A. Aleksandrov, V. G. Mansurov, and K. S. Zhuravlev, Physica E 75, 309 (2016).
  9. V. G. Mansurov, Yu. G. Galittsyn, A. Yu. Nikitin,K. S. Zhuravlev, and Ph. Vennegues, Phys. Stat. Sol. (c) 3, 1548 (2006).
  10. S. Hovmoller, X. Zou, and T. E. Weirich, Adv. ImaginElectron Phys. 123, 257 (2002).
  11. A. V. Nabok, A. K. Ray, and A. K. Hassan, J. Appl.Phys. 88, 1333 (2000).
  12. T. M. Usher, D. Olds, J. Liku, and K. Page, ActaCryst. A74, 322 (2018).
  13. C. L. Farrow, C. Shi, P. Juhas, X. Peng, and S. J. L. Billinge, J. Appl. Crystallogr, 47, 561 (2014).
  14. C. Shi, E. L. Redmond, A. Mazaheripour, P. Juhas,T. F. Fuller, and S. J. L. Billinge, J. Phys. Chem. C 117, 7226 (2013).
  15. M. Khalkhali, Q. Liu, H. Zeng, and H. Zhang, Sci.Rep. 5, 14267 (2015).
  16. A. Jentys, Phys. Chem. Chem. Phys. 1, 4059 (1999).
  17. G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini,G. Leofanti, E. Groppo, and C. Lamberti, J. Phys. Chem. C 118, 4085, (2014).
  18. R. B. Gregor and F. W. Lytle, J. Catal. 63, 476, (1980).
  19. M. Shirai, T. Inoue, H. Onishi, K. Asakura, and Y. Iwasawa, J. Catal. 145, 159 (1994).
  20. C. Giansante and I. Infante, J. Phys. Chem. Lett. 8, 8209 (2017).
  21. C. J. P. Clark and W. R. Flavell, Chem. Rec. 18, 1 (2018).
  22. N. S. Marinkovic, K. Sasaki, and R. R. Adzic, J.Electrochem. Soc. 165, J3222 (2018).
  23. D. Kido and K. Asakura, Acc. Mater. Surf. Res. 5, 148 (2020).

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах