STUDY OF PHASE TRANSITIONS AND THERMODYNAMIC PROPERTIES OF THE POTTS MODEL WITH FRUSTRATIONS ON THE KAGOME LATTICE
- Authors: Ramazanov M.K.1, Murtazaev A.K.1, Magomedov M.A.1, Rizvanova T.R.1
-
Affiliations:
- Dagestan Federal Research Center RAS
- Issue: Vol 165, No 3 (2024)
- Pages: 404-409
- Section: Articles
- URL: https://journals.rcsi.science/0044-4510/article/view/256499
- DOI: https://doi.org/10.31857/S0044451024030106
- ID: 256499
Cite item
Abstract
The Monte Carlo method was used to study phase transitions and thermodynamic properties of the two-dimensional antiferromagnetic Potts model with the number of spin states q = 4 on the kagome lattice with interactions of the first J1 and second J2 neighbors. The studies were carried out for the magnitude of the interaction of second neighbors in the interval . It was found that at r = 0 the system exhibits disorder and strong degeneracy of the ground state. It is shown that taking into account ferromagnetic interactions of second neighbors will remove the degeneracy of the ground state. An analysis of the nature of phase transitions in the considered interval r was carried out. It is shown that in the range 0.2 ≤ r ≤ 1 a second-order phase transition is observed.
About the authors
M. K. Ramazanov
Dagestan Federal Research Center RAS
Email: sheikh77@mail.ru
Russian Federation, 367000, Makhachkala
A. K. Murtazaev
Dagestan Federal Research Center RAS
Email: sheikh77@mail.ru
Russian Federation, 367000, Makhachkala
M. A. Magomedov
Dagestan Federal Research Center RAS
Email: sheikh77@mail.ru
Russian Federation, 367000, Makhachkala
T. R. Rizvanova
Dagestan Federal Research Center RAS
Author for correspondence.
Email: sheikh77@mail.ru
Russian Federation, 367000, Makhachkala
References
- H. T. Diep, Frustrated Spin Systems, World Scientific, Singapore (2004).
- F. A. Kassan-Ogly, A. K. Murtazaev, A. K. Zhuravlev, M. K. Ramazanov, and A. I. Proshkin, J. Magn. Magn. Mater 384, 247 (2015).
- А. К. Муртазаев, М. К. Рамазанов, ФТТ 65, 1455 (2023).
- F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
- W. Zhang and Y. Deng, Phys. Rev. E 78, 031103 (2008).
- A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, Mater. Lett. 236, 669 (2019).
- М. К. Рамазанов, А. К. Муртазаев, Письма в ЖЭТФ 109, 610 (2019).
- М. К. Бадиев, А. К. Муртазаев, М. К. Рамазанов, М. А. Магомедов, ЖЭТФ 161, 753 (2022).
- М. К. Бадиев, А. К. Муртазаев, М. К. Рамазанов, М. А. Магомедов, ФНТ 46, 824 (2020).
- А. К. Муртазаев, Д. Р. Курбанова, М. К. Рамазанов, ЖЭТФ 156, 980 (2019).
- M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44, 837 (1980).
- J. L. Cardy, M. Nauenberg, D. J. Scalapino, Phys. Rev. B 22, 2560 (1980).
- M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Phys. A 521, 543 (2019).
- H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai, J. Phys. A 31, 2287 (1998).
- F. A. Kassan-Ogly and A. I. Proshkin, Phys. Solid State. 60, 1090 (2018).
- М. А. Фадеева, Л. Н. Щур, ЖЭТФ 162, 909 (2022).
- А. К. Муртазаев, М. К. Рамазанов, М. К. Мазагаева, М. А. Магомедов, ЖЭТФ 156, 502 (2019).
- Д. Р. Курбанова, М. К. Рамазанов, М. А. Магомедов, А. К. Муртазаев, ЖЭТФ 163, 816 (2023).
- М. К. Рамазанов, А. К. Муртазаев, М. А. Магомедов, М. К. Мазагаева, ФММ 124, 339 (2023).
- E. Domany, M. Schick, and J. S. Walker. Phys. Rev. Lett. 38, 1148 (1977).
- M. G. Townsend, G. Longworth, and E. Roudaut, Phys. Rev. B 33, 4919 (1986).
- Y. Chiaki and O. Yutaka, J. Phys. A: Math. Gen. 34, 8781 (2001).
- F. Wang and D. P. Landau, Phys. Rev. E 64, 0561011–1 (2001).
- F. A. Kassan-Ogly, B. N. Filippov, A. K. Murtazaev,M. K. Ramazanov, and M. K. Badiev, J. Magn. Magn. Mater 24, 3418 (2012).
- F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
- М. К. Рамазанов, А. К. Муртазаев, Письма в ЖЭТФ 103, 522 (2016).
- А. К. Муртазаев, Т. Р. Ризванова, М. К. Рамазанов, М. А. Магомедов, ФТТ 62, 1278 (2020).
Supplementary files
