PHASE DISTRIBUTION IN 1D LOCALIZATION AND PHASE TRANSITIONS IN SINGLE-MODE WAVEGUIDES

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Localization of electrons in 1D disordered systems is usually described in the random phase approximation, when distributions of phases j and q, entering the transfer matrix, are considered as uniform. In the general case, the random phase approximation is violated, and the evolution equations (when the system length L is increased) contain three independent variables, i.e. the Landauer resistance r and the combined phases y = q j and c = q + j. The phase c does not affect the evolution of r and was not considered in previous papers. The distribution of the phase y is found to exhibit an unusual phase transition at the point Ɛ0 when changing the electron energy Ɛ, which manifests itself in the appearance of the imaginary part of y. The resistance distribution P(r) has no singularity at the point Ɛ0, and the transition looks unobservable in the electron disordered systems. However, the theory of 1D localization is immediately applicable to propagation of waves in single-mode optical waveguides. The optical methods are more efficient and provide possibility to measure phases y and c. On the one hand, it makes observable the phase transition in the distribution P(y), which can be considered as a “trace” of the mobility edge remaining in 1D systems. On the other hand, observability of the phase c makes actual derivation of its evolution equation, which is presented below. Relaxation of the distribution P(c) to the limiting distribution P (c) at L → ∞ is described by two exponents, whose exponentials have jumps of the second derivative, when the energy Ɛ is changed.

Sobre autores

I. Suslov

Kapitza Institute for Physical Problems

Autor responsável pela correspondência
Email: uslov@kapitza.ras.ru
Rússia, 119334, Moscow

Bibliografia

  1. P.W. Anderson, D. J. Thouless, E. Abrahams, and D. S. Fisher, Phys. Rev. B 22, 3519 (1980).
  2. R. Landauer, IBM J. Res. Dev. 1, 2 (1957); Phil. Mag. 21, 863 (1970).
  3. В. И. Мельников, ФТТ , 782 (1981).
  4. A. A. Abrikosov, Sol. St. Comm. 37, 997 (1981).
  5. N. Kumar, Phys. Rev. B 31, 5513 (1985).
  6. B. Shapiro, Phys. Rev. B 34, 4394 (1986).
  7. P. Mello, Phys. Rev. B 35, 1082 (1987).
  8. B. Shapiro, Phil. Mag. 56, 1031 (1987).
  9. И. М. Лифшиц, С. А. Гредескул, Л. А. Пастур, Введение в теорию неупорядоченных систем, Наука, Москва (1982).
  10. C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
  11. X. Chang, X. Ma, M. Yepez, A. Z. Genack, Москва, P. A. Mello, Phys. Rev. B 96, 180203 (2017).
  12. L. I. Deych, D. Zaslavsky, and A.A. Lisyansky, Phys. Rev. Lett. 81, 5390 (1998).
  13. L. I. Deych, A. A. Lisyansky, and B. L.Altshuler, Phys. Rev. Lett. 84, 2678 (2000); Phys. Rev. B 64, 224202 (2001).
  14. L. I. Deych, M. V. Erementchouk, and A.A. Lisyansky, Phys. Rev. Lett. 90, 126601 (2001).
  15. И. М. Суслов, ЖЭТФ 156, 950 (2019).
  16. I. M. Suslov, Phil. Mag. Lett. 102, 255 (2022).
  17. И. М. Суслов, ЖЭТФ 162, 750 (2022).
  18. S. I. Bozhevolnyi and I. M. Suslov, Phys. Scr. 98, 065024 (2023).
  19. I. M. Suslov, Adv. Theor. Comp. Phys. 6, 77 (2023).
  20. Н. Мотт, Э. Дэвис, Электронные процессы в некристаллических веществах, Мир, Москва (1982).
  21. V. V. Brazhkin and I. M. Suslov, J. Phys. Cond. Matt. 32, 35LT02 (2020).
  22. И. М. Суслов, ЖЭТФ 158, 911 (2020).
  23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wetterling, Numerical Recipes in Fortran,
  24. Cambridge University Press (1992).
  25. S. John, Phys. Rev. Lett. 53, 2169 (1984).
  26. P. Van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985).
  27. P. W. Anderson, Philos. Mag. B 52, 505 (1985).
  28. S. John, Phys. Rev. Lett. 58, 2486 (1987).
  29. D. S. Wiersma, Nature Photon. 7, 188 (2013).
  30. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, Phys. Rev. Lett. 89, 186801 (2002).
  31. Zh. Shi, M. Davy, and A. Z. Genack, Opt. Express 23, 12293 (2015).
  32. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
  33. Ч. К. Као, Нобелевская лекция по физике, УФН 180, 1350 (2010).
  34. D. W. Pohl, W. Denk, and M. Lanz, Appl. Phys. Lett. 44, 651 (1984).
  35. D. W. Pohl and L. Novotny, J. Vac. Sci. Technol. B 12, 1441 (1994).
  36. A. L. Lereu, A. Passian, and Ph. Dumas, Int. J.Nanotechnol. 9, 488 (2012).
  37. G.Binning, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
  38. E. Meyer, Progress in Surface Science 41, 3 (1992).
  39. G.Binning and H.Rohrer, Helv. Phys. Acta. 55, 726 (1982).
  40. S. I. Bozhevolnyi, V. A. Zenin, R. Malreanu, I.P.Radko, and A. V. Lavrinenko, Opt. Express 24, 4582 (2016).
  41. I. M. Vellekoop and A. P. Mosk, Phys. Rev. Lett. 101, 120601 (2008).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».