Vliyanie nagreva na generatsiyu i svoystva platikonov v vysokodobrotnykh opticheskikh mikrorezonatorakh

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Pumping a high-Q optical microresonator by an external laser is inevitably associated with thermal effects. They have a significant impact on the dynamics of nonlinear processes in such structures, including the generation of optical frequency combs and dissipative solitons. The generation process and the properties of bright solitons in such heated microresonators with anomalous group velocity dispersion (GVD) have been well studied, and a number of methods have been developed to minimize the effect of thermal processes. However, for dark solitons or platicons excited at normal GVD, these issues have been studied significantly less. In this work, the properties of platicons in heated microresonators are analyzed, and it is shown that in the case of “positive” thermal effects, when the direction of the thermal shift of the resonance frequencies of a microresonator coincides with the direction of the nonlinear shift, the widest high-energy platicons with the duration close to the round trip time in the resonator are stable. In the case of “negative” thermal effects, narrow low-energy platicons remain stable. Moreover, in microresonators with “negative” thermal effects, the interaction between cubic nonlinear and thermal processes can ensure the generation of platicons without special techniques required in other cases.

作者简介

V. Lobanov

Russian Quantum Center

编辑信件的主要联系方式.
Email: v.lobanov@rqc.ru
121205, Moscow, Russia

参考

  1. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, Physics Letters A. 137, 393 (1989).
  2. V. S. Ilchenko, A. B. Matsko, IEEE Journ. Sel. Top. Quant. El 12(1), 3 (2006).
  3. М. Л. Городецкий. Оптические микрорезонаторы с гигантской добротностью. М.: ФИЗМАТЛИТ, 2011. 416 с.
  4. V. S. Ilchenko, A. B. Matsko, IEEE Journ. Sel. Top. Quant. El 12(1), 15 (2006).
  5. J. Ward, O. Benson, Laser Photon. Rev. 5, 553 (2011).
  6. D. V. Strekalov, C. Marquard, A. B. Matsko et al., Journ. Opt. 18(12), 123002 (2016).
  7. G. Lin, A. Coillet, Y. K. Chembo, Adv. Opt. Photon. 9(4), 828 (2017).
  8. V. Ilchenko, M. L. Gorodetskii, Las. Phys. 2, 1004 (1992).
  9. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin et al., J. Opt. Soc. Am. B 22(2), 459 (2005).
  10. T. Carmon, L. Yang, K. J. Vahala, Opt. Express 12(20), 4742 (2004).
  11. S. Diallo, G. Lin, Y. K. Chembo, Opt. Lett. 40(16), 3834 (2015).
  12. A. Leshem, Z. Qi, T. F. Carruthers et al., Phys. Rev. A 103, 013512 (2021).
  13. P. Del'Haye, A. Schliesser, O. Arcizet et al., Nature 450(7173), 1214 (2007).
  14. T. Herr, V. Brasch, J. D. Jost et al., Nat. Photon. 8(2), 145 (2014).
  15. T. J. Kippenberg, A. L. Gaeta, M. Lipson et al., Science 361(6402), eaan8083 (2018).
  16. A. Pasquazi, M. Peccianti, L. Razzari et al., Phys. Rep. 729, 1 (2018).
  17. A. Kovach, D. Chen, J. He et al., Adv. Opt. Photon. 12(1), 135 (2020).
  18. A. Hermans, K. Van Gasse, B. Kuyken, APL Photonics. 7, 100901 (2022).
  19. Y. Sun, J. Wu, M. Tan et al., Adv. Opt. Photon. 15, 86 (2023).
  20. C. Bao, Y. Xuan, J. A. Jaramillo-Villegas et al., Opt. Lett. 42(13), 2519 (2017).
  21. J. R. Stone, T. C. Briles, T. E. Drake et al., Phys. Rev. Lett. 121, 063902 (2018).
  22. T. Wildi, V. Brasch, J. Liu et al., Opt. Lett. 44(18), 4447 (2019).
  23. Q. Li, T. C. Briles, D. A. Westly et al., Optica 4(2), 193 (2017).
  24. V. Brasch, M. Geiselmann, T. Herr et al., Science 351(6271), 357 (2016).
  25. V. Brasch, M. Geiselmann, M. H. P. Pfei er et al., Opt. Express 24(25), 29312 (2016).
  26. X. Yi, Q.-F. Yang, K. Y. Yang et al., Opt. Lett. 41(9), 2037 (2016).
  27. G. Moille, X. Lu, A. Rao et al., Phys. Rev. Applied 12, 034057 (2019).
  28. S. Zhang, J. M. Silver, L. Del Bino et al., Optica 6(2), 206 (2019).
  29. H. Zhou, Y. Geng, W. Cui et al., Light: Science & Applications 8(1), 50 (2019).
  30. N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov et al., Opt. Express 25(23), 28167 (2017).
  31. N. G. Pavlov, S. Koptyaev, G. V. Lihachev et al., Nature Photon. 12(11), 694 (2018).
  32. N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov et al., Opt. Express 28(26), 38892 (2020).
  33. B. Shen, L. Chang, J. Liu et al., Nature 583(7812), 365 (2020).
  34. Н. Ю. Дмитриев, А. С. Волошин, Н. М. Кондратьев и др., ЖЭТФ, 162(1), 14 (2022).
  35. N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov et al., Front. Phys. (2023).
  36. V. E. Lobanov, G. Lihachev, T. J. Kippenberg et al., Opt. Express 23(6), 7713 (2015).
  37. C. Godey, I. V. Balakireva, A. Coillet et al., Phys. Rev. A 89, 063814 (2014).
  38. X. Xue, P.-H. Wang, Y. Xuan et al., Laser & Photon. Rev. 11(1), 1600276 (2017).
  39. B. Y. Kim, Y. Okawachi, J. K. Jang et al., Opt. Lett. 44(18), 4475 (2019).
  40. A. F¨ul¨op, M. Mazur, Mikael, A. Lorences-Riesgo et al., Nat. Comm. 9(1), 1598 (2018)
  41. 'O. B. Helgason, A. F¨ul¨op, J. Schr¨oder et al., J. Opt. Soc. Am. B 36(8), 2013 (2019).
  42. X. Xue, Y. Xuan, P.-H. Wang et al., Las. & Photon. Rev. 9(4), L23 (2015).
  43. S.-P. Yu, E. Lucas, J. Zang et al., Nat. Comm. 13(1), 3134 (2022).
  44. V. E. Lobanov, N. M. Kondratiev, A. E. Shitikov et al., Phys. Rev. A 100, 013807 (2019).
  45. H. Liu, S.-W. Huang, W. Wang et al., Photon. Res. 10(8), 1877 (2022).
  46. W. Jin, Q.-F. Yang, L. Chang et al., Nat. Photon. 15, 346 (2021).
  47. G. Lihachev, W. Weng, J. Liu et al., Nat. Commun. 13(1), 1771 (2022).
  48. А. Е. Шитиков, А. С. Волошин, И. К. Горелов и др., ЖЭТФ 161(3),1 (2022).
  49. A. Savchenkov, A. Matsko, Journ. Opt. 20(3), 035801 (2018).
  50. J. Lim, A. A. Savchenkov, E. Dale et al., Nat. Commun. 8(1), 8 (2017).
  51. P. Parra-Rivas, E. Knobloch, D. Gomila et al., Phys. Rev. A 93, 063839 (2016).
  52. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko et al., Opt. Express 15(11), 6768 (2007).
  53. L. Wu, H. Wang, Q. Yang et al., Opt. Lett. 45(18), 5129 (2020).
  54. I. S. Grudinin, N. Yu, Optica 2, 221 (2015).
  55. S. Fujii, T. Tanabe, Nanophotonics 9(5), 1087 (2020).
  56. S.-P. Wang, T.-H. Lee, Y.-Y. Chen et al., Micromachines. 13, 454 (2022).
  57. Ch. Zhang, G. Kang, J. Wang, et al., Opt. Express. 30, 44395 (2022).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##