Влияние нагрева на генерацию и свойства платиконов в высокодобротных оптических микрорезонаторах

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При накачке высокодобротного оптического микрорезонатора внешним лазером неизбежно проявляются тепловые эффекты. Они оказывают существенное влияние на динамику нелинейных процессов в таких структурах, в том числе и на генерацию оптических частотных гребенок и диссипативных солитонов. Процесс генерации и свойства светлых солитонов в таких нагретых микрорезонаторах при аномальной дисперсии групповых скоростей хорошо изучены, и разработан ряд методов, минимизирующих влияние тепловых процессов. Однако для темных солитонов или платиконов, возбуждаемых при нормальной дисперсии групповых скоростей, эти вопросы исследованы существенно меньше. В данной работе проанализированы свойства платиконов в нагретых микрорезонаторах и показано, что в случае «положительных» тепловых эффектов, когда направление теплового сдвига резонансных частот микрорезонатора совпадает с направлением нелинейного сдвига, устойчивы наиболее широкие высокоэнергетичные платиконы, длительность которых близка к времени обхода в резонаторе. В случае «отрицательных» тепловых эффектов устойчивость сохраняют узкие низкоэнергетичные платиконы. Более того, в микрорезонаторах с «отрицательными» тепловыми эффектами взаимодействие кубично-нелинейных и тепловых процессов может обеспечить возможность генерации платиконов без применения специальных приемов, необходимых в иных случаях.

Об авторах

В. Е. Лобанов

Российский квантовый центр

Автор, ответственный за переписку.
Email: v.lobanov@rqc.ru
121205, Moscow, Russia

Список литературы

  1. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, Physics Letters A. 137, 393 (1989).
  2. V. S. Ilchenko, A. B. Matsko, IEEE Journ. Sel. Top. Quant. El 12(1), 3 (2006).
  3. М. Л. Городецкий. Оптические микрорезонаторы с гигантской добротностью. М.: ФИЗМАТЛИТ, 2011. 416 с.
  4. V. S. Ilchenko, A. B. Matsko, IEEE Journ. Sel. Top. Quant. El 12(1), 15 (2006).
  5. J. Ward, O. Benson, Laser Photon. Rev. 5, 553 (2011).
  6. D. V. Strekalov, C. Marquard, A. B. Matsko et al., Journ. Opt. 18(12), 123002 (2016).
  7. G. Lin, A. Coillet, Y. K. Chembo, Adv. Opt. Photon. 9(4), 828 (2017).
  8. V. Ilchenko, M. L. Gorodetskii, Las. Phys. 2, 1004 (1992).
  9. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin et al., J. Opt. Soc. Am. B 22(2), 459 (2005).
  10. T. Carmon, L. Yang, K. J. Vahala, Opt. Express 12(20), 4742 (2004).
  11. S. Diallo, G. Lin, Y. K. Chembo, Opt. Lett. 40(16), 3834 (2015).
  12. A. Leshem, Z. Qi, T. F. Carruthers et al., Phys. Rev. A 103, 013512 (2021).
  13. P. Del'Haye, A. Schliesser, O. Arcizet et al., Nature 450(7173), 1214 (2007).
  14. T. Herr, V. Brasch, J. D. Jost et al., Nat. Photon. 8(2), 145 (2014).
  15. T. J. Kippenberg, A. L. Gaeta, M. Lipson et al., Science 361(6402), eaan8083 (2018).
  16. A. Pasquazi, M. Peccianti, L. Razzari et al., Phys. Rep. 729, 1 (2018).
  17. A. Kovach, D. Chen, J. He et al., Adv. Opt. Photon. 12(1), 135 (2020).
  18. A. Hermans, K. Van Gasse, B. Kuyken, APL Photonics. 7, 100901 (2022).
  19. Y. Sun, J. Wu, M. Tan et al., Adv. Opt. Photon. 15, 86 (2023).
  20. C. Bao, Y. Xuan, J. A. Jaramillo-Villegas et al., Opt. Lett. 42(13), 2519 (2017).
  21. J. R. Stone, T. C. Briles, T. E. Drake et al., Phys. Rev. Lett. 121, 063902 (2018).
  22. T. Wildi, V. Brasch, J. Liu et al., Opt. Lett. 44(18), 4447 (2019).
  23. Q. Li, T. C. Briles, D. A. Westly et al., Optica 4(2), 193 (2017).
  24. V. Brasch, M. Geiselmann, T. Herr et al., Science 351(6271), 357 (2016).
  25. V. Brasch, M. Geiselmann, M. H. P. Pfei er et al., Opt. Express 24(25), 29312 (2016).
  26. X. Yi, Q.-F. Yang, K. Y. Yang et al., Opt. Lett. 41(9), 2037 (2016).
  27. G. Moille, X. Lu, A. Rao et al., Phys. Rev. Applied 12, 034057 (2019).
  28. S. Zhang, J. M. Silver, L. Del Bino et al., Optica 6(2), 206 (2019).
  29. H. Zhou, Y. Geng, W. Cui et al., Light: Science & Applications 8(1), 50 (2019).
  30. N. M. Kondratiev, V. E. Lobanov, A. V. Cherenkov et al., Opt. Express 25(23), 28167 (2017).
  31. N. G. Pavlov, S. Koptyaev, G. V. Lihachev et al., Nature Photon. 12(11), 694 (2018).
  32. N. M. Kondratiev, V. E. Lobanov, E. A. Lonshakov et al., Opt. Express 28(26), 38892 (2020).
  33. B. Shen, L. Chang, J. Liu et al., Nature 583(7812), 365 (2020).
  34. Н. Ю. Дмитриев, А. С. Волошин, Н. М. Кондратьев и др., ЖЭТФ, 162(1), 14 (2022).
  35. N. M. Kondratiev, V. E. Lobanov, A. E. Shitikov et al., Front. Phys. (2023).
  36. V. E. Lobanov, G. Lihachev, T. J. Kippenberg et al., Opt. Express 23(6), 7713 (2015).
  37. C. Godey, I. V. Balakireva, A. Coillet et al., Phys. Rev. A 89, 063814 (2014).
  38. X. Xue, P.-H. Wang, Y. Xuan et al., Laser & Photon. Rev. 11(1), 1600276 (2017).
  39. B. Y. Kim, Y. Okawachi, J. K. Jang et al., Opt. Lett. 44(18), 4475 (2019).
  40. A. F¨ul¨op, M. Mazur, Mikael, A. Lorences-Riesgo et al., Nat. Comm. 9(1), 1598 (2018)
  41. 'O. B. Helgason, A. F¨ul¨op, J. Schr¨oder et al., J. Opt. Soc. Am. B 36(8), 2013 (2019).
  42. X. Xue, Y. Xuan, P.-H. Wang et al., Las. & Photon. Rev. 9(4), L23 (2015).
  43. S.-P. Yu, E. Lucas, J. Zang et al., Nat. Comm. 13(1), 3134 (2022).
  44. V. E. Lobanov, N. M. Kondratiev, A. E. Shitikov et al., Phys. Rev. A 100, 013807 (2019).
  45. H. Liu, S.-W. Huang, W. Wang et al., Photon. Res. 10(8), 1877 (2022).
  46. W. Jin, Q.-F. Yang, L. Chang et al., Nat. Photon. 15, 346 (2021).
  47. G. Lihachev, W. Weng, J. Liu et al., Nat. Commun. 13(1), 1771 (2022).
  48. А. Е. Шитиков, А. С. Волошин, И. К. Горелов и др., ЖЭТФ 161(3),1 (2022).
  49. A. Savchenkov, A. Matsko, Journ. Opt. 20(3), 035801 (2018).
  50. J. Lim, A. A. Savchenkov, E. Dale et al., Nat. Commun. 8(1), 8 (2017).
  51. P. Parra-Rivas, E. Knobloch, D. Gomila et al., Phys. Rev. A 93, 063839 (2016).
  52. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko et al., Opt. Express 15(11), 6768 (2007).
  53. L. Wu, H. Wang, Q. Yang et al., Opt. Lett. 45(18), 5129 (2020).
  54. I. S. Grudinin, N. Yu, Optica 2, 221 (2015).
  55. S. Fujii, T. Tanabe, Nanophotonics 9(5), 1087 (2020).
  56. S.-P. Wang, T.-H. Lee, Y.-Y. Chen et al., Micromachines. 13, 454 (2022).
  57. Ch. Zhang, G. Kang, J. Wang, et al., Opt. Express. 30, 44395 (2022).

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах