Propagation of a Laser-Induced Magnetostatic Wave Packet in a Pseudo Spin Valve in the Presence of Spin Pumping

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Spin pumping and angular momentum transfer, i.e., the emission of a spin current by a precessing magnetization and the reverse process of absorption, play an important role in coherent magnetic dynamics processes in multilayered structures. For ferromagnetic layers separated by a nonmagnetic interlayer these effects give rise to a dynamic coupling between the layers that is dissipative in nature and affects the damping of coherent magnetization precession. We have used micromagnetic simulations to analyze the influence of such a dynamic coupling on the propagation of a laser-induced surface magnetostatic wave (MSW) packet in a pseudo spin valve structure consisting of two ferromagnetic metallic layers separated by a nonmagnetic metallic interlayer. We have considered the MSW generation due to laser-induced heating, which leads to dynamic changes in magnetization and magnetic anisotropy, and added the dynamic coupling effect to the equations for our micromagnetic simulations. As a result, we have revealed that under certain conditions such a coupling leads to a decrease in the spatial damping of the wave packet that corresponds to the acoustic MSW mode forming in the structure considered.

作者简介

A. Fedyanin

Ioffe Institute

Email: fedianin.a.e@mail.ioffe.ru
194021, St. Petersburg, Russia

N. Khokhlov

Ioffe Institute

Email: fedianin.a.e@mail.ioffe.ru
194021, St. Petersburg, Russia

A. Kalashnikova

Ioffe Institute; Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fedianin.a.e@mail.ioffe.ru
194021, St. Petersburg, Russia; 125009, Moscow, Russia

参考

  1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics, J. Phys. D: Appl. Phys. 43, 260301 (2010), https://dx.doi.org/10.1088/0022-3727/43/26/260301.
  2. С. А. Никитов, А. Р. Сафин, Д. В. Калябин и др., Магноника - новое направление спинтроники и спин-волновой электроники, УФН 185, 1099 (2015), https://ufn.ru/ru/articles/2015/10/m/.
  3. A. Barman, G. Gubbiotti, S. Ladak et al., The 2021 Magnonics Roadmap, J. Phys.: Condens. Matter 33, 413001 (2021), https://dx.doi.org/10.1088/1361-648X/abec1a.
  4. Ph. Pirro, V. I. Vasyuchka, A. Serga, et al., Advances in Coherent Magnonics, Nature Rev. Mater. 6, 1114 (2021), https://doi.org/10.1038/s41578-021-00332-w.
  5. A. V. Chumak, P. Kabos, M. Wu et al., Advances in Magnetics Roadmap on Spin-Wave Computing, IEEE Trans. Magn. 58, 1 (2022), https://ieeexplore.ieee.org/document/9706176.
  6. T. Jungwirth, X. Marti, P. Wadley et al., Antiferromagnetic Spintronics, Nature Nanotech. 3, 231 (2016), https://doi.org/10.1038/nnano.2016.18.
  7. L. A. Prozorova and B. Ya. Kotyuzhanskii, Direct Observation of the Propagation of Spin Waves in an Antiferromagnet, Physica B+C 86-88, 1061 (1977), 10.1016/0378-4363(77)90797-5' target='_blank'>https://www.sciencedirect.com/science/article/pii/0378436377907975doi: 10.1016/0378-4363(77)90797-5.
  8. V. S. L'vov and L. A. Prozorova, Spin Waves Above the Threshold of Parametric Excitations, in Modern Problems in Condensed Matter Sciences, ed. by A. S. Borovik-Romanov and S. K. Sinha, Elsevier (1988), Vol. 22, p. 233, https://www.sciencedirect.com/science/article/pii/B974870681500108044X.
  9. Л. А. Прозорова, А. И. Смирнов, Изменение спектра спиновых волн при взаимодействии магнонов, ЖЭТФ 74, 1554 (1978), http://jetp.ras.ru/cgibin/r/index/r/74/4/p1554?a=list.
  10. H.-A. Krug von Nidda, L. E. Svistov, and L. A. Prozorova, Spin-Wave Resonances in Antiferromagnets, Low Temp. Phys. 36, 736 (2010), https://doi.org/10.1063/1.3490859.
  11. P. Gru¨nberg, R. Schreiber, Y. Pang et al., Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers Across Cr Interlayers, Phys. Rev. Lett. 57, 2442 (1986), https://doi.org/10.1103/PhysRevLett.57.2442.
  12. E. Albisetti, S. Tacchi, R. Silvani et al., Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets, Adv. Mater. 32, 1906439 (2020), https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201906439.
  13. B. Heinrich, and J. F. Cochran, Ultrathin Metallic Magnetic Films: Magnetic Anisotropies and Exchange Interactions, Adv. Phys. 42, 523 (1993), https://doi.org/10.1080/00018739300101524.
  14. R. A. Gallardo, T. Schneider, A. K. Chaurasiya et al., Recon gurable Spin-Wave Nonreciprocity Induced by Dipolar Interaction in a Coupled Ferromagnetic Bilayer, Phys. Rev. Appl. 12, 034012 (2019), https://link.aps.org/doi/10.1103/PhysRevApplied. 12.034012.
  15. P. I. Gerevenkov, V. D. Bessonov, V. S. Teplov et al., Nonreciprocal Collective Magnetostatic Wave Modes in Geometrically Asymmetric Bilayer Structure with Nonmagnetic Spacer, Nanoscale 15, 6785 (2023), http://dx.doi.org/10.1039/D2NR06003E.
  16. J. Topp, D. Heitmann, M. P. Kostylev et al., Making a Recon gurable Arti cial Crystal by Ordering Bistable Magnetic Nanowires, Phys. Rev. Lett. 104, 207205 (2010), https://link.aps.org/doi/10.1103/PhysRevLett. 104.207205.
  17. M. Krawczyk and D. Grundler, Review and Prospects of Magnonic Crystals and Devices with Reprogrammable Band Structure, J. Phys.: Cond. Matt. 26, 123202 (2014), https://dx.doi.org/10.1088/0953-8984/26/12/123202.
  18. G. Gubbiotti, X. Zhou, Z. Haghshenasfard et al., Reprogrammable Magnonic Band Structure of Layered permalloy/Cu/permalloy Nanowires, Phys. Rev. B 97, 134428 (2018), https://link.aps.org/doi/10.1103/PhysRevB.97. 134428.
  19. Ya. Tserkovnyak, A. Brataas, G. E. W. Gerrit et al., Nonlocal Magnetization Dynamics in Ferromagnetic Heterostructures, Rev. Mod. Phys. 77, 1375 (2005), https://link.aps.org/doi/10.1103/RevModPhys.77. 1375.
  20. B. Heinrich, Ya. Tserkovnyak, G. Woltersdorf et al., Dynamic Exchange Coupling in Magnetic Bilayers, Phys. Rev. Lett. 90, 187601 (2003), https://link.aps.org/doi/10.1103/PhysRevLett.90. 187601.
  21. Y. Kajiwara, K. Harii, S. Takahashi et al., Transmission of Electrical Signals by Spin-Wave Interconversion in a Magnetic Insulator, Nature 464, 262 (2010), https://www.nature.com/articles/nature08876.
  22. E. Padron-Hernandez, A. Azevedo, S. M. Rezende, Ampli cation of Spin Waves in Yttrium Iron Garnet Films Through the Spin Hall E ect, Appl. Phys. Lett. 99, 192511 (2011), https://doi.org/10.1063/1.3660586.
  23. Л. А. Прозорова, А. С. Боровик-Романов, Параметрическое возбуждение спиновых волн в антиферромагнитном CsMnF3, Письма в ЖЭТФ 10, 316 (1969), http://jetpletters.ru/ps/656/article-0232.shtml.
  24. T. Satoh, Yu. Terui, R. Moriya et al., Directional Control of Spin-Wave Emission by Spatially Shaped Light, Nature Photon. 6, 662 (2012), https://doi.org/10.1038/nphoton.2012.218.
  25. Y. Au, M. Dvornik, T. Davison et al., Direct Excitation of Propagating Spin Waves by Focused Ultrashort Optical Pulses, Phys. Rev. Lett. 110, 097201 (2013), https://doi.org/10.1103/PhysRevLett.110.097201.
  26. N. E. Khokhlov, P. I. Gerevenkov, L. A. Shelukhin et al., Optical Excitation of Propagating Magnetostatic Waves in an Epitaxial Galfenol Film by Ultrafast Magnetic Anisotropy Change, Phys. Rev. Appl. 12, 044044 (2018), https://link.aps.org/doi/10.1103/PhysRevApplied. 12.044044.
  27. J. R. Hortensius, D. Afanasiev, M. Matthiesen et al., Coherent Spin-Wave Transport in an Antiferromagnet, Nature Phys. 17, 1001 (2021), https://doi.org/10.1038/s41567-021-01290-4.
  28. F. Formisano, T. T. Gareev, D. I. Khusyainov et al., Coherent THz Spin Dynamics in Antiferromagnets Beyond the Macrospin Approximation, https://doi.org/10.48550/arXiv.2303.06996.
  29. I. V. Savochkin, M. J¨ackl, V. I. Belotelov et al., Generation of Spin Waves by a Train of fs-Laser Pulses: a Novel Approach for Tuning Magnon Wavelength, Sci. Rep. 7, 5668 (2017), https://doi.org/10.1038/s41598-017-05742-x.
  30. I. Yoshimine, Y. Y. Tanaka, T. Shimura et al., Unidirectional Control of Optically Induced Spin Waves, Europhys. Lett. 117, 67001 (2017), https://dx.doi.org/10.1209/0295-5075/117/67001.
  31. N. E. Khokhlov, A. E. Khramova, Ia. A. Filatov et al., Neel Domain Wall as a Tunable Filter for Optically Excited Magnetostatic Waves, J. Magn. Magn. Mater. 534, 168018 (2021), https://www.sciencedirect.com/science/article/pii/S0304885321002948.
  32. S. Muralidhar, R. Khymyn, A. A. Awad et al., Femtosecond Laser Pulse Driven Caustic Spin Wave Beams, Phys. Rev. Lett. 126, 037204 (2021), https://link.aps.org/doi/10.1103/PhysRevLett.126. 037204.
  33. P. I. Gerevenkov, D. V. Kuntu, Ia. A. Filatov et al., E ect of Magnetic Anisotropy Relaxation on Laser-Induced Magnetization Precession in Thin Galfenol Films, Phys. Rev. Mater. 5, 094407 (2021), https://link.aps.org/doi/10.1103/PhysRevMaterials. 5.094407.
  34. A. E. Khramova, M. Kobecki, I. A. Akimov et al., Tuning the Directionality of Spin Waves Generated by Femtosecond Laser Pulses in a Garnet Film by Optically Driven Ferromagnetic Resonance, Phys. Rev. B 107, 064415 (2023), https://doi.org/10.1103/PhysRevB.107.064415.
  35. M. Vogel, A. V. Chumak, E. H. Waller et al., Optically recon gurable magnetic materials, Nature Phys. 11, 487 (2015), https://doi.org/10.1038/nphys3325.
  36. A. V. Sadovnikov, E. N. Beginin, S. E. Sheshukova et al., Route Toward Semiconductor Magnonics: Light- Induced Spin-Wave Nonreciprocity in a YIG/GaAs Structure, Phys. Rev. B 99, 054424 (2019), https://link.aps.org/doi/10.1103/PhysRevB.99. 054424.
  37. A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit et al., Ultrafast Spin-Transfer Torque Driven by Femtosecond Pulsed-Laser Excitation, Nature Commun. 5, 4333 (2014), https://doi.org/10.1038/ncomms5333.
  38. A. P.Danilov, A. V. Scherbakov, B. A. Glavin et al., Optically Excited Spin Pumping Mediating Collective Magnetization Dynamics in a Spin Valve Structure, Phys. Rev. B 98, 060406 (2018), https://link.aps.org/doi/10.1103/PhysRevB.98. 060406.
  39. P. Omelchenko and E. Montoya and E. Girt et al., Interlayer Exchange Coupling, Spin Pumping and Spin Transport in Metallic Magnetic Single and Bilayer Structures, JETP 131, 113 (2020), https://doi.org/10.1134/S1063776120070080.
  40. J. Leliaert and J. Mulkers, Tomorrow's Micromagnetic Simulations, J. Appl. Phys. 125, 180901 (2019), https://doi.org/10.1063/1.5093730.
  41. M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0, Tech. Rep. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999), https://doi.org/10.6028/NIST.IR.6376.
  42. X. Joyeux, T. Devolder, J.-V. Kim et al., Con guration and Temperature Dependence of Magnetic Damping in Spin Valves, J. Appl. Phys. 110, 063915 (2011), https://doi.org/10.1063/1.3638055.
  43. M. van Kampen, C. Jozsa, J. T. Kohlhepp et al., All-Optical Probe of Coherent Spin Waves, Phys. Rev. Lett. 88, 227201 (2002), https://doi.org/10.1103/PhysRevLett.88.227201.
  44. E. Carpene, E. Mancini, D. Dazzi et al., Ultrafast Three-Dimensional Magnetization Precession and Magnetic Anisotropy of a Photoexcited Thin Film of Iron, Phys. Rev. B 81, 060415 (2010), https://link.aps.org/doi/10.1103/PhysRevB.81. 060415.
  45. А. М. Калашникова, Н. Е. Хохлов, Л. А. Шелухин и др., Сверхбыстрое лазерно-индуцированное управление магнитной анизотропией наноструктур, ЖТФ 91, 1848 (2021), https://journals.ioffe.ru/articles/51751.
  46. E. Carpene, E. Mancini, C. Dallera et al., Three-Dimensional Magnetization Evolution and the Role of Anisotropies in Thin Fe/MgO Films: Static and Dynamic Measurements, J. Appl. Phys. 108, 063919 (2010), https://doi.org/10.1063/1.3488639.
  47. Ia. A. Filatov, P. I. Gerevenkov, M. Wang et al., Spectrum Evolution and Chirping of Laser-Induced Spin Wave Packets in Thin Iron Films, Appl. Phys. Lett. 120, 112404 (2022), https://doi.org/10.1063/5.0077195.
  48. S. Iihama, Y. Sasaki, A. Sugihara et al., Quanti cation of a Propagating Spin-Wave Packet Created by an Ultrashort Laser Pulse in a Thin Film of a Magnetic Metal, Phys. Rev. B 94, 020401 (2016), https://link.aps.org/doi/10.1103/PhysRevB.94. 020401.
  49. Ia. A. Filatov, P. I. Gerevenkov, M. Wang et al., Spectrum Evolution of Magnetostatic Waves Excited Through Ultrafast Laser-Induced Heating, J. Phys.: Confer. Ser. 1679, 012193 (2020), https://iopscience.iop.org/article/10.1088/1742-6596/1697/1/012193.
  50. S.-J. Yun, Ch.-G. Cho, and S.-B. Choe, Simultaneous Excitation of Two Di erent Spinwave Modes by Optical Ultrafast Demagnetization, Appl. Phys. Expr. 8, 063009 (2015), https://dx.doi.org/10.7567/APEX.8.063009.
  51. K. Sekiguchi, S.-W. Lee, H. Sukegawa et al., Spin-Wave Propagation in Cubic Anisotropic Materials, NPG Asia Mater. 9, e392 (2017), https://doi.org/10.1038/am.2017.87.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».