Rasprostranenie lazerno-indutsirovannogo paketa magnitostaticheskikh voln v psevdo-spinovom klapane v prisutstvii spinovoy nakachki

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Spin pumping and angular momentum transfer, i.e., the emission of a spin current by a precessing magnetization and the reverse process of absorption, play an important role in coherent magnetic dynamics processes in multilayered structures. For ferromagnetic layers separated by a nonmagnetic interlayer these effects give rise to a dynamic coupling between the layers that is dissipative in nature and affects the damping of coherent magnetization precession. We have used micromagnetic simulations to analyze the influence of such a dynamic coupling on the propagation of a laser-induced surface magnetostatic wave (MSW) packet in a pseudo spin valve structure consisting of two ferromagnetic metallic layers separated by a nonmagnetic metallic interlayer. We have considered the MSW generation due to laser-induced heating, which leads to dynamic changes in magnetization and magnetic anisotropy, and added the dynamic coupling effect to the equations for our micromagnetic simulations. As a result, we have revealed that under certain conditions such a coupling leads to a decrease in the spatial damping of the wave packet that corresponds to the acoustic MSW mode forming in the structure considered.

作者简介

A. Fedyanin

Ioffe Institute

Email: fedianin.a.e@mail.ioffe.ru
194021, St. Petersburg, Russia

N. Khokhlov

Ioffe Institute

Email: fedianin.a.e@mail.ioffe.ru
194021, St. Petersburg, Russia

A. Kalashnikova

Ioffe Institute; Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fedianin.a.e@mail.ioffe.ru
194021, St. Petersburg, Russia; 125009, Moscow, Russia

参考

  1. V. V. Kruglyak, S. O. Demokritov, and D. Grundler, Magnonics, J. Phys. D: Appl. Phys. 43, 260301 (2010), https://dx.doi.org/10.1088/0022-3727/43/26/260301.
  2. С. А. Никитов, А. Р. Сафин, Д. В. Калябин и др., Магноника - новое направление спинтроники и спин-волновой электроники, УФН 185, 1099 (2015), https://ufn.ru/ru/articles/2015/10/m/.
  3. A. Barman, G. Gubbiotti, S. Ladak et al., The 2021 Magnonics Roadmap, J. Phys.: Condens. Matter 33, 413001 (2021), https://dx.doi.org/10.1088/1361-648X/abec1a.
  4. Ph. Pirro, V. I. Vasyuchka, A. Serga, et al., Advances in Coherent Magnonics, Nature Rev. Mater. 6, 1114 (2021), https://doi.org/10.1038/s41578-021-00332-w.
  5. A. V. Chumak, P. Kabos, M. Wu et al., Advances in Magnetics Roadmap on Spin-Wave Computing, IEEE Trans. Magn. 58, 1 (2022), https://ieeexplore.ieee.org/document/9706176.
  6. T. Jungwirth, X. Marti, P. Wadley et al., Antiferromagnetic Spintronics, Nature Nanotech. 3, 231 (2016), https://doi.org/10.1038/nnano.2016.18.
  7. L. A. Prozorova and B. Ya. Kotyuzhanskii, Direct Observation of the Propagation of Spin Waves in an Antiferromagnet, Physica B+C 86-88, 1061 (1977), 10.1016/0378-4363(77)90797-5' target='_blank'>https://www.sciencedirect.com/science/article/pii/0378436377907975doi: 10.1016/0378-4363(77)90797-5.
  8. V. S. L'vov and L. A. Prozorova, Spin Waves Above the Threshold of Parametric Excitations, in Modern Problems in Condensed Matter Sciences, ed. by A. S. Borovik-Romanov and S. K. Sinha, Elsevier (1988), Vol. 22, p. 233, https://www.sciencedirect.com/science/article/pii/B974870681500108044X.
  9. Л. А. Прозорова, А. И. Смирнов, Изменение спектра спиновых волн при взаимодействии магнонов, ЖЭТФ 74, 1554 (1978), http://jetp.ras.ru/cgibin/r/index/r/74/4/p1554?a=list.
  10. H.-A. Krug von Nidda, L. E. Svistov, and L. A. Prozorova, Spin-Wave Resonances in Antiferromagnets, Low Temp. Phys. 36, 736 (2010), https://doi.org/10.1063/1.3490859.
  11. P. Gru¨nberg, R. Schreiber, Y. Pang et al., Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers Across Cr Interlayers, Phys. Rev. Lett. 57, 2442 (1986), https://doi.org/10.1103/PhysRevLett.57.2442.
  12. E. Albisetti, S. Tacchi, R. Silvani et al., Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antiferromagnets, Adv. Mater. 32, 1906439 (2020), https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201906439.
  13. B. Heinrich, and J. F. Cochran, Ultrathin Metallic Magnetic Films: Magnetic Anisotropies and Exchange Interactions, Adv. Phys. 42, 523 (1993), https://doi.org/10.1080/00018739300101524.
  14. R. A. Gallardo, T. Schneider, A. K. Chaurasiya et al., Recon gurable Spin-Wave Nonreciprocity Induced by Dipolar Interaction in a Coupled Ferromagnetic Bilayer, Phys. Rev. Appl. 12, 034012 (2019), https://link.aps.org/doi/10.1103/PhysRevApplied. 12.034012.
  15. P. I. Gerevenkov, V. D. Bessonov, V. S. Teplov et al., Nonreciprocal Collective Magnetostatic Wave Modes in Geometrically Asymmetric Bilayer Structure with Nonmagnetic Spacer, Nanoscale 15, 6785 (2023), http://dx.doi.org/10.1039/D2NR06003E.
  16. J. Topp, D. Heitmann, M. P. Kostylev et al., Making a Recon gurable Arti cial Crystal by Ordering Bistable Magnetic Nanowires, Phys. Rev. Lett. 104, 207205 (2010), https://link.aps.org/doi/10.1103/PhysRevLett. 104.207205.
  17. M. Krawczyk and D. Grundler, Review and Prospects of Magnonic Crystals and Devices with Reprogrammable Band Structure, J. Phys.: Cond. Matt. 26, 123202 (2014), https://dx.doi.org/10.1088/0953-8984/26/12/123202.
  18. G. Gubbiotti, X. Zhou, Z. Haghshenasfard et al., Reprogrammable Magnonic Band Structure of Layered permalloy/Cu/permalloy Nanowires, Phys. Rev. B 97, 134428 (2018), https://link.aps.org/doi/10.1103/PhysRevB.97. 134428.
  19. Ya. Tserkovnyak, A. Brataas, G. E. W. Gerrit et al., Nonlocal Magnetization Dynamics in Ferromagnetic Heterostructures, Rev. Mod. Phys. 77, 1375 (2005), https://link.aps.org/doi/10.1103/RevModPhys.77. 1375.
  20. B. Heinrich, Ya. Tserkovnyak, G. Woltersdorf et al., Dynamic Exchange Coupling in Magnetic Bilayers, Phys. Rev. Lett. 90, 187601 (2003), https://link.aps.org/doi/10.1103/PhysRevLett.90. 187601.
  21. Y. Kajiwara, K. Harii, S. Takahashi et al., Transmission of Electrical Signals by Spin-Wave Interconversion in a Magnetic Insulator, Nature 464, 262 (2010), https://www.nature.com/articles/nature08876.
  22. E. Padron-Hernandez, A. Azevedo, S. M. Rezende, Ampli cation of Spin Waves in Yttrium Iron Garnet Films Through the Spin Hall E ect, Appl. Phys. Lett. 99, 192511 (2011), https://doi.org/10.1063/1.3660586.
  23. Л. А. Прозорова, А. С. Боровик-Романов, Параметрическое возбуждение спиновых волн в антиферромагнитном CsMnF3, Письма в ЖЭТФ 10, 316 (1969), http://jetpletters.ru/ps/656/article-0232.shtml.
  24. T. Satoh, Yu. Terui, R. Moriya et al., Directional Control of Spin-Wave Emission by Spatially Shaped Light, Nature Photon. 6, 662 (2012), https://doi.org/10.1038/nphoton.2012.218.
  25. Y. Au, M. Dvornik, T. Davison et al., Direct Excitation of Propagating Spin Waves by Focused Ultrashort Optical Pulses, Phys. Rev. Lett. 110, 097201 (2013), https://doi.org/10.1103/PhysRevLett.110.097201.
  26. N. E. Khokhlov, P. I. Gerevenkov, L. A. Shelukhin et al., Optical Excitation of Propagating Magnetostatic Waves in an Epitaxial Galfenol Film by Ultrafast Magnetic Anisotropy Change, Phys. Rev. Appl. 12, 044044 (2018), https://link.aps.org/doi/10.1103/PhysRevApplied. 12.044044.
  27. J. R. Hortensius, D. Afanasiev, M. Matthiesen et al., Coherent Spin-Wave Transport in an Antiferromagnet, Nature Phys. 17, 1001 (2021), https://doi.org/10.1038/s41567-021-01290-4.
  28. F. Formisano, T. T. Gareev, D. I. Khusyainov et al., Coherent THz Spin Dynamics in Antiferromagnets Beyond the Macrospin Approximation, https://doi.org/10.48550/arXiv.2303.06996.
  29. I. V. Savochkin, M. J¨ackl, V. I. Belotelov et al., Generation of Spin Waves by a Train of fs-Laser Pulses: a Novel Approach for Tuning Magnon Wavelength, Sci. Rep. 7, 5668 (2017), https://doi.org/10.1038/s41598-017-05742-x.
  30. I. Yoshimine, Y. Y. Tanaka, T. Shimura et al., Unidirectional Control of Optically Induced Spin Waves, Europhys. Lett. 117, 67001 (2017), https://dx.doi.org/10.1209/0295-5075/117/67001.
  31. N. E. Khokhlov, A. E. Khramova, Ia. A. Filatov et al., Neel Domain Wall as a Tunable Filter for Optically Excited Magnetostatic Waves, J. Magn. Magn. Mater. 534, 168018 (2021), https://www.sciencedirect.com/science/article/pii/S0304885321002948.
  32. S. Muralidhar, R. Khymyn, A. A. Awad et al., Femtosecond Laser Pulse Driven Caustic Spin Wave Beams, Phys. Rev. Lett. 126, 037204 (2021), https://link.aps.org/doi/10.1103/PhysRevLett.126. 037204.
  33. P. I. Gerevenkov, D. V. Kuntu, Ia. A. Filatov et al., E ect of Magnetic Anisotropy Relaxation on Laser-Induced Magnetization Precession in Thin Galfenol Films, Phys. Rev. Mater. 5, 094407 (2021), https://link.aps.org/doi/10.1103/PhysRevMaterials. 5.094407.
  34. A. E. Khramova, M. Kobecki, I. A. Akimov et al., Tuning the Directionality of Spin Waves Generated by Femtosecond Laser Pulses in a Garnet Film by Optically Driven Ferromagnetic Resonance, Phys. Rev. B 107, 064415 (2023), https://doi.org/10.1103/PhysRevB.107.064415.
  35. M. Vogel, A. V. Chumak, E. H. Waller et al., Optically recon gurable magnetic materials, Nature Phys. 11, 487 (2015), https://doi.org/10.1038/nphys3325.
  36. A. V. Sadovnikov, E. N. Beginin, S. E. Sheshukova et al., Route Toward Semiconductor Magnonics: Light- Induced Spin-Wave Nonreciprocity in a YIG/GaAs Structure, Phys. Rev. B 99, 054424 (2019), https://link.aps.org/doi/10.1103/PhysRevB.99. 054424.
  37. A. J. Schellekens, K. C. Kuiper, R. R. J. C. de Wit et al., Ultrafast Spin-Transfer Torque Driven by Femtosecond Pulsed-Laser Excitation, Nature Commun. 5, 4333 (2014), https://doi.org/10.1038/ncomms5333.
  38. A. P.Danilov, A. V. Scherbakov, B. A. Glavin et al., Optically Excited Spin Pumping Mediating Collective Magnetization Dynamics in a Spin Valve Structure, Phys. Rev. B 98, 060406 (2018), https://link.aps.org/doi/10.1103/PhysRevB.98. 060406.
  39. P. Omelchenko and E. Montoya and E. Girt et al., Interlayer Exchange Coupling, Spin Pumping and Spin Transport in Metallic Magnetic Single and Bilayer Structures, JETP 131, 113 (2020), https://doi.org/10.1134/S1063776120070080.
  40. J. Leliaert and J. Mulkers, Tomorrow's Micromagnetic Simulations, J. Appl. Phys. 125, 180901 (2019), https://doi.org/10.1063/1.5093730.
  41. M. J. Donahue and D. G. Porter, OOMMF User's Guide, Version 1.0, Tech. Rep. NISTIR 6376, National Institute of Standards and Technology, Gaithersburg, MD (1999), https://doi.org/10.6028/NIST.IR.6376.
  42. X. Joyeux, T. Devolder, J.-V. Kim et al., Con guration and Temperature Dependence of Magnetic Damping in Spin Valves, J. Appl. Phys. 110, 063915 (2011), https://doi.org/10.1063/1.3638055.
  43. M. van Kampen, C. Jozsa, J. T. Kohlhepp et al., All-Optical Probe of Coherent Spin Waves, Phys. Rev. Lett. 88, 227201 (2002), https://doi.org/10.1103/PhysRevLett.88.227201.
  44. E. Carpene, E. Mancini, D. Dazzi et al., Ultrafast Three-Dimensional Magnetization Precession and Magnetic Anisotropy of a Photoexcited Thin Film of Iron, Phys. Rev. B 81, 060415 (2010), https://link.aps.org/doi/10.1103/PhysRevB.81. 060415.
  45. А. М. Калашникова, Н. Е. Хохлов, Л. А. Шелухин и др., Сверхбыстрое лазерно-индуцированное управление магнитной анизотропией наноструктур, ЖТФ 91, 1848 (2021), https://journals.ioffe.ru/articles/51751.
  46. E. Carpene, E. Mancini, C. Dallera et al., Three-Dimensional Magnetization Evolution and the Role of Anisotropies in Thin Fe/MgO Films: Static and Dynamic Measurements, J. Appl. Phys. 108, 063919 (2010), https://doi.org/10.1063/1.3488639.
  47. Ia. A. Filatov, P. I. Gerevenkov, M. Wang et al., Spectrum Evolution and Chirping of Laser-Induced Spin Wave Packets in Thin Iron Films, Appl. Phys. Lett. 120, 112404 (2022), https://doi.org/10.1063/5.0077195.
  48. S. Iihama, Y. Sasaki, A. Sugihara et al., Quanti cation of a Propagating Spin-Wave Packet Created by an Ultrashort Laser Pulse in a Thin Film of a Magnetic Metal, Phys. Rev. B 94, 020401 (2016), https://link.aps.org/doi/10.1103/PhysRevB.94. 020401.
  49. Ia. A. Filatov, P. I. Gerevenkov, M. Wang et al., Spectrum Evolution of Magnetostatic Waves Excited Through Ultrafast Laser-Induced Heating, J. Phys.: Confer. Ser. 1679, 012193 (2020), https://iopscience.iop.org/article/10.1088/1742-6596/1697/1/012193.
  50. S.-J. Yun, Ch.-G. Cho, and S.-B. Choe, Simultaneous Excitation of Two Di erent Spinwave Modes by Optical Ultrafast Demagnetization, Appl. Phys. Expr. 8, 063009 (2015), https://dx.doi.org/10.7567/APEX.8.063009.
  51. K. Sekiguchi, S.-W. Lee, H. Sukegawa et al., Spin-Wave Propagation in Cubic Anisotropic Materials, NPG Asia Mater. 9, e392 (2017), https://doi.org/10.1038/am.2017.87.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##