Influence of the Encapsulating Layer Thickness on the Quality of MoSe2-Based Heterostructures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dependence of the width of exciton and trion photoluminescence lines in MoSe2 monolayers on the thickness of hexagonal boron nitride encapsulating layers has been investigated. The possibility of variation of the exciton photoluminescence linewidth due to the interaction of excitons with the modes of resonator cavities made up of a silicon substrate and a boron nitride top layer has been checked. This interaction may significantly change the photoluminescence linewidth owing to the Parcell effect. Measurements taken of samples with different thicknesses of the bottom and top boron nitride layers have not revealed any influence of the Parcell effect on the linewidth. It has turned out however that the linewidth narrows by several times with increasing boron nitride bottom layer thickness from 10 to 100 nm and reaches 2 meV at a thickness of 100 nm. Supposedly, such narrowing of the photoluminescence line is associated with a decrease in the density of submicron bubbles, which takes place at longitudinal stress relaxation in the thicker layer of boron nitride.

About the authors

A. S Brichkin

Osip’yan Institute of Solid-State Physics, Russian Academy of Sciences

Email: chernen@issp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

G. M Golyshkov

Osip’yan Institute of Solid-State Physics, Russian Academy of Sciences

Email: chernen@issp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

A. V Chernenko

Osip’yan Institute of Solid-State Physics, Russian Academy of Sciences

Author for correspondence.
Email: chernen@issp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

References

  1. G. Wang, A. Chernikov, M. Glazov et al., Rev. Mod. Phys. 90, 021001 (2018).
  2. Arash Rahimi-Iman, Semiconductor Photonics of Nanomaterials and Quantum Structures Applications in Optoelectronics and Quantum Technologies, Springer Series in Solid-State Sciences, Springer Science and Business Media Deutschland GmbH (2021).
  3. G. Moody, D. C. Kavir, K. Hao et al., Nat.Commun. 6, 8315 (2015).
  4. T. Jakubczyk, V. Delmonte, M. Koperski et al., Nano Lett. 16, 5333 (2016).
  5. F. Cadiz, E. Courtade, C. Robert et al., Phys. Rev. X 7, 021026 (2017).
  6. А. В. Черненко, А. С. Бричкин, Изв. РАН, сер. физ. 85, 245 (2021).
  7. J. Wierzbowski, J. Klein, F. Sigger et al., Sci. Rep. 7, 12383 (2017).
  8. H. H. Fang, B. Han, C. Robert et al., Phys. Rev. Lett. 123, 067401 (2019).
  9. G. D. Shepard, A. A. Obafunso, Li Xiangzhi et al., 2D Mater. 4, 021019 (2017).
  10. M. Selig, G. Berghaeuser, A. Raja et al., Nat.Commun. 7, 13279 (2016).
  11. J. C. G. Henriques, N. A. Mortensen, and N. M. R. Peres, Phys. Rev. B 103, 235402 (2021).
  12. T. Schmidt, K. Lischka, and W. Zulehne, Phys. Rev. B 45, 8989 (1992).
  13. S. Lippert, L. M. Schneider, D. Renaud et al., 2D Mater. 4, 025045 (2017).
  14. D. Kaplan, Y. Gong, K. Mills et al., 2D Mater. 3, 015005 (2016).
  15. E. Khestanova, F. Guinea, L. Fumagalli et al., Nat.Commun. 7, 12587 (2016).
  16. A. V. Tyurnina, D. A. Bandurin, E. Khestanova et al., ACS Photonics 6, 516 (2019).
  17. L. Schneider, S. Esdaille, D. Rhodes et al., Opt. Express 23, 37131 (2019).
  18. S. Du erwiel, S. Schwarz, F. Withers, et al., Nat.Commun. 6, 8579 (2015).
  19. T. LaMountain, J. Nelson, E. J. Lenferink et al., Nat.Commun. 12, 4530 (2021).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies