Antiferromagnitnaya model' Pottsa na ob\"emno-tsentrirovannoy kubicheskoy reshetke

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have studied phase transitions and thermodynamic properties of the antiferromagnetic Potts model with number of spin states q = 3 on a body-centered cubic lattice by the Monte Carlo method. Investigations have been performed with account for exchange interactions J1 and J2 between the first and second nearest neighbors. The phase transition order has been analyzed using the histogram method. It is found that in this model with J2 = 0, a second-order phase transition is observed. It is concluded that the inclusion of the interaction between the second nearest neighbors changes the type of the phase transition.

About the authors

D. R Kurbanova

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: d_kurbanova1990@mail.ru
367015, Makhachkala, Russia

M. K Ramazanov

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: d_kurbanova1990@mail.ru
367015, Makhachkala, Russia

M. A Magomedov

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Email: d_kurbanova1990@mail.ru
367015, Makhachkala, Russia

A. K Murtazaev

Amirkhanov Institute of Physics, Dagestan Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: d_kurbanova1990@mail.ru
367015, Makhachkala, Russia

References

  1. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
  2. R. J. Baxter, J. Phys. C 6, 445 (1973).
  3. C. Yamaguchi and Y. Okabe, J. Phys. A 34, 8781 (2001).
  4. R. Tamura, S. Tanaka, and N. Kawashima, Prog. Theor. Phys. 124, 381 (2010).
  5. T. Surungan, Y. Komura, and Y. Okabe, AIP Conference Proceedings 1617, 79 (2014).
  6. W. Zhang and Y. Deng, Phys. Rev. E 78, 031103 (2008).
  7. H. T. Diep, Frustrated Spin Systems, World Scienti c Publishing, Singapore (2004).
  8. I. Puha and H. T. Diep, J. Appl. Phys. 87, 5905 (2000).
  9. Zh. Fu, W. Guo, and H. W. J. Bl¨ote, Phys. Rev. E 101, 012118 (2020).
  10. M. K. Ramazanov, A. K. Murtazaev, and M. A. Magomedov, Physica A 521, 543 (2019).
  11. Ф. А. Кассан-Оглы, А. И. Прошкин, ФТТ 60, 1078 (2018).
  12. Y. Panov and O. Rojas, Phys. Rev. E 103, 062107 (2021).
  13. Д. Р. Курбанова, А. К. Муртазаев, М. К. Рамазанов, М. А. Магомедов, Т. А. Тааев, ЖЭТФ 158, 1095 (2020).
  14. А. К. Муртазаев, М. К. Рамазанов, М. К. Мазагаева, М. А. Магомедов, ЖЭТФ 156, 502 (2019).
  15. М. К. Рамазанов, А. К. Муртазаев, М. А. Магомедов, М. К. Мазагаева, Письма в ЖЭТФ 114, 762 (2021).
  16. Д. Р. Курбанова, А. К. Муртазаев, М. К. Рамазанов, М. А. Магомедов, Письма в ЖЭТФ 115, 505 (2022).
  17. M. Nauenberg, D. J. Scalapino, Phys. Rev. Lett. 44, 837 (1980).
  18. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 22, 2560 (1980).
  19. A. K. Murtazaev, M. K. Ramazanov, D. R. Kurbanova, M. A. Magomedov, and K. Sh. Murtazaev, Mat. Lett. 236, 669 (2019).
  20. А. К. Муртазаев, М. К. Рамазанов, М. А. Магомедов, Д. Р. Курбанова, ФТТ 60, 1798 (2018).
  21. A. K. Murtazaev, D. R. Kurbanova, and M. K. Ramazanov, Physica A 545, 123548 (2020).
  22. D. P. Landau and K. Binder, Monte Carlo Simulations in Statistical Physics, Cambridge University Press, Cambridge (2000).
  23. А. О. Сорокин, Письма в ЖЭТФ 109, 423 (2019).
  24. А. О. Сорокин, Письма в ЖЭТФ 111, 34 (2020).
  25. A. Mitsutake, Y. Sugita, and Y. Okamoto, Biopolymers (Peptide Science) 60, 96 (2001).
  26. F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001).
  27. C. Zhou and R. N. Bhatt, Phys. Rev. E 72, 025701 (2005).
  28. F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001).
  29. Y. Komura and Y. Okabe, Phys. Rev. E 85, 010102 (2012).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies