Statistika passivnogo skalyara v dvumernom sdvigovom techenii s fluktuatsiyami

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study statistical properties of the passive scalar advection in a 2D flow that consist of a steady-state shear flow and a relatively weak smooth random component taking into account the effects of finite weak diffusion. The model is closely related to the dynamics of passive scalar transfer inside coherent vortices emerging as a result of an inverse cascade in 2D turbulence. We analyze both the decay of the passive scalar and the problem with continuous supply of the scalar to the system. In both cases, the passive scalar distribution exhibits strong intermittence, which can be indicated with single-point moments calculated in this study.

Sobre autores

N. Ivchenko

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research Center “Higher School of Economics”

Email: ssver@itp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia; 111250, Moscow, Russia

S. Vergeles

Landau Institute for Theoretical Physics, Russian Academy of Sciences; National Research Center “Higher School of Economics”

Autor responsável pela correspondência
Email: ssver@itp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia; 111250, Moscow, Russia

Bibliografia

  1. G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).
  2. H. Xia, M. Shats, and G. Falkovich, Phys. Fluids 21, 125101 (2009).
  3. J. Laurie, G. Bo etta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113, 254503 (2014).
  4. I. Kolokolov and V. Lebedev, Phys. Rev. E 93, 033104 (2016).
  5. I. Kolokolov and V. Lebedev, J. Fluid Mech. 809, R2 (2016).
  6. A. Frishman and C. Herbert, Phys. Rev. Lett. 120, 204505 (2018).
  7. A. N. Doludenko, S. V. Fortova, I. V. Kolokolov, and V. V. Lebedev, Phys. Fluids 33, 011704 (2021).
  8. A. Groisman and V. Steinberg, Nature 405, 53 (2000).
  9. A. Groisman and V. Steinberg, Nature 410, 905 (2001).
  10. V. Steinberg, Ann. Rev. Fluid Mech. 53, 27 (2021).
  11. G. Falkovich and N. Vladimirova, Phys. Rev. Lett. 121, 164501 (2018).
  12. H. Feng, M. G. Olsen, Y. Liu, R. O. Fox, and J. C. Hill, AIChE J. 51, 2649 (2005).
  13. T. Burghelea, E. Segre, I. Bar-Joseph, A. Groisman, and V. Steinberg, Phys. Rev. E 69, 066305 (2004).
  14. Y. Amarouchene and H. Kellay, Phys. Rev. Lett. 93, 214504 (2004).
  15. Y. Jun and V. Steinberg, Phys. Fluids 22, 123101 (2010).
  16. А. М. Обухов, Изв. АН СССР, сер. геогр. и геофиз. 13(1), 58 (1949).
  17. S. Corrsin, J. App. Phys. 22, 469 (1951).
  18. G. K. Batchelor, J. Fluid Mech. 5, 113 (1959).
  19. K. R. Sreenivasan, Proc. Nat. Acad. Sci. 116, 18175 (2019).
  20. D. A. Donzis, K. Sreenivasan, and P. Yeung, Flow. Turb.Comb. 85, 549 (2010).
  21. D. Son, Phys. Rev. E 59, R3811 (1999).
  22. E. Balkovsky and A. Fouxon, Phys. Rev. E 60, 4164 (1999)
  23. S. Vergeles, J. Exp. Theor. Phys. 102, 685 (2006).
  24. B. I. Shraiman and E.D. Siggia, Phys. Rev. E 49, 2912 (1994).
  25. M. Souzy, I. Zaier, H. Lhuissier, T. Le Borgne, and B. Metzger, J. Fluid Mech. 838, R3 (2018).
  26. A. Celani, M. Cencini, M. Vergassola, E. Villermaux, and D. Vincenzi, J. Fluid Mech. 523, 99 (2005).
  27. K. Turitsyn, J. Exp. Theor. Phys. 105, 655 (2007).
  28. D. E. Smith, H.P. Babcock, and S. Chu, Science 283, 1724 (1999).
  29. Y. Liu and V. Steinberg, Europhys. Lett. 90, 44005 (2010).
  30. M. Sˇiler, L. Ornigotti, O. Brzobohaty', P. J'akl, A. Ryabov, V. Holubec, P. Zem'anek, and R. Filip, Phys. Rev. Lett. 121, 230601 (2018).
  31. M. Chertkov, I. Kolokolov, V. Lebedev, and K. Turitsyn, J. Fluid Mech. 531, 251 (2005).
  32. A. Pulia to and K. Turitsyn, Phys. D: Nonlin. Phenomena 211, 9 (2005).
  33. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag (1985).
  34. V. Klyatskin, W. Woyczynski, and D. Gurarie, in Stochastic Modelling in Physical Oceanography, Springer (1996), pp. 221-269.
  35. I. Kolokolov and N. T. Trung, Phys. Lett. A 376, 1836 (2012).
  36. A. J. Majda, Phys. Fluids A: Fluid Dyn. 5, 1963 (1993).
  37. M. Avellaneda and A. J. Majda, J. Stat. Phys. 69, 689 (1992).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies