Inzhektsiya chisto spinovogo toka v gelimagnetik

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The injection of a pure spin current into a conducting helimagnet is investigated. The characteristic decay lengths for the spin current injected into the helimagnet are determined, and their physical meaning is described. It is shown that instead of the spin diffusion length, helimagnets are characterized by the decay length that is always smaller than the spin diffusion length, the difference in these lengths being determined by the ratio of the helimagnet spiral period to the spin diffusion length. We predict the existence of the “effect of the chiral polarization of a pure spin current,” i.e., the emergence of the spin current with longitudinal (transverse) polarization, which depends on the spiral chirality, upon the injection of a pure spin current with the transverse (longitudinal) polarization relative to the spiral axis.

About the authors

I. A Yasyulevich

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: yasyulevich@imp.uran.ru
620137, Yekaterinburg, Russia

N. G Bebenin

Institute of Natural Sciences and Mathematics, Ural Federal University named after the first president of Russia B.N. Yeltsin

Email: yasyulevich@imp.uran.ru
620137, Yekaterinburg, Russia

V. V Ustinov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Natural Sciences and Mathematics, Ural Federal University named after the first president of Russia B.N. Yeltsin

Author for correspondence.
Email: ustinov@imp.uran.ru
620137, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys.Rev. Lett. 61, 2472 (1988).
  2. Spin Current, ed. by S. Maekawa, S.O. Valenzuela, E. Saitoh, and T. Kimura, Oxford University Press, New York (2017), p. 520.
  3. С.А. Никитов, Д.В. Калябин, И.В. Лисенков, А.Н. Славин, Ю.Н. Барабаненков, С.А. Осокин, А.В. Садовников, Е.Н. Бегинин, М.А. Морозова, Ю.П.Шараевский, Ю.А. Филимонов, Ю.В. Хивинцев, С.Л. Высоцкий, В.К. Сахаров, Е.С. Павлов, УФН 185, 1099 (2015).
  4. М.И. Дьяконов, В.И. Перель, Письма в ЖЭТФ 13, 657 (1971).
  5. M. I. Dyakonov and V. I. Perel, Phys. Lett.A 35, 459 (1971).
  6. J.E. Hirsch, Phys.Rev. Lett. 83, 1834 (1999).
  7. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev.Mod.Phys. 90, 015005 (2018).
  8. D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, D. Zhu, K. Cao, S. Peng, W. Cai, D. Zhu, and W. Zhao, Fundamental Research 2, 522 (2022).
  9. H. Chen, Q. Niu, and A.H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014).
  10. Y. Takeuchi, Y. Yamane, J.Y. Yoon, R. Itoh, B. Jinnai, S. Kanai, J. Ieda, S. Fukami, and H. Ohno, Nature Materials 20, 1364 (2021).
  11. Ю.А. Изюмов, УФН 144, 439 (1984).
  12. R. J. Elliott and F.A. Wedgwood, Proc.Phys. Soc. 81, 846 (1963).
  13. R. J. Elliott and F.A. Wedgwood, Proc.Phys. Soc. 84, 63 (1964).
  14. A.A. Fraerman and O.G. Udalov, Phys.Rev.B 77, 094401 (2008).
  15. T. Taniguchi and H. Imamura, Phys.Rev.B 81, 012405 (2010).
  16. J.-i. Kishine and A. S. Ovchinnikov, Sol. St.Phys. 66, 1 (2015).
  17. T. Yokouchi, N. Kanazawa, A. Kikkawa, D. Morikawa, K. Shibata, T. Arima, Y. Taguchi, F. Kagawa, and Y. Tokura, Nat.Commun. 8, 866 (2017).
  18. R. Aoki, Y. Kousaka, and Y. Togawa, Phys.Rev. Lett. 122, 057206 (2019).
  19. V.V. Ustinov and I.A. Yasyulevich, Phys.Rev.B 102, 134431 (2020).
  20. S. Okumura, T. Morimoto, Y. Kato, and Y. Motome, J.Phys.: Conf. Ser. 2164, 012068 (2022).
  21. J. Xiao, A. Zangwill, and M.D. Stiles, Phys. Rev.B 73, 054428 (2006).
  22. H. Watanabe, K. Hoshi, and J.-i. Ohe, Phys. Rev.B 94, 125143 (2016).
  23. S. Okumura, H. Ishizuka, Y. Kato, J.-i. Ohe, and Y. Motome, Appl.Phys. Lett. 115, 012401 (2019).
  24. V. Ustinov, N. Bebenin, and I. Yasyulevich, J.Phys.: Conf. Ser. 1389, 012151 (2019).
  25. В.В. Устинов, И.А. Ясюлевич, Физика металлов и металловедение 121, 257 (2020).
  26. Е.А. Караштин, ФТТ 62, 1482 (2020).
  27. A. Aqeel, N. Vlietstra, J.A. Heuver, G.E.W. Bauer, B. Noheda, B. J. van Wees, and T.T.M. Palstra, Phys.Rev.B 92, 224410 (2015).
  28. A. Aqeel, N. Vlietstra, A. Roy, M. Mostovoy, B. J. van Wees, and T.T.M. Palstra, Phys.Rev.B 94, 134418 (2016).
  29. A. Aqeel, M. Mostovoy, B. J. van Wees, and T.T.M. Palstra, J.Phys.D: Appl.Phys. 50, 174006 (2017).
  30. С.В. Вонсовский, Магнетизм, Наука, Москва (1971), c. 1032.
  31. H.C. Torrey, Phys.Rev. 104, 563 (1956).
  32. C. Heide, Phys.Rev.B 65, 054401 (2001).
  33. Л.С. Левитов, Ю.В. Назаров, Г.М. Элиашберг, ЖЭТФ 88, 229 (1985).
  34. T. Furukawa, Y. Shimokawa, K. Kobayashi, and T. Itou, Nat.Commun. 8, 954 (2017).
  35. T. Furukawa, Y. Watanabe, N. Ogasawara, K. Kobayashi, and T. Itou, Phys.Rev.Res. 3, 023111 (2021).
  36. Y. Nabei, D. Hirobe, Y. Shimamoto, K. Shiota, A. Inui, Y. Kousaka, Y. Togawa, and H.M. Yamamoto, Appl.Phys. Lett. 117, 052408 (2020).
  37. A. Inui, R. Aoki, Y. Nishiue, K. Shiota, Y. Kousaka, H. Shishido, D. Hirobe, M. Suda, J.-i. Ohe, J. I. Kishine, H.M. Yamamoto, and Y. Togawa, Phys.Rev. Lett. 124, 166602 (2020).
  38. K. Shiota, A. Inui, Y. Hosaka, R. Amano, Y. Onuki, M. Hedo, T. Nakama, D. Hirobe, J.-i. Ohe, J.-i. Kishine, H.M. Yamamoto, H. Shishido, and Y. Togawa, Phys.Rev. Lett. 127, 126602 (2021).
  39. H. Shishido, R. Sakai, Y. Hosaka, and Y. Togawa, Appl.Phys. Lett. 119, 182403 (2021).
  40. J. Bass and W.P. Pratt Jr, J.Phys.: Cond.Matt. 19, 183201 (2007).
  41. C. Fang, C.H. Wan, B. S. Yang, J.Y. Qin, B. S. Tao, H. Wu, X. Zhang, X. F. Han, A. Hoffmann, X.M. Liu, and Z.M. Jin, Phys.Rev.B 96, 134421 (2017).

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies