Inzhektsiya chisto spinovogo toka v gelimagnetik

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The injection of a pure spin current into a conducting helimagnet is investigated. The characteristic decay lengths for the spin current injected into the helimagnet are determined, and their physical meaning is described. It is shown that instead of the spin diffusion length, helimagnets are characterized by the decay length that is always smaller than the spin diffusion length, the difference in these lengths being determined by the ratio of the helimagnet spiral period to the spin diffusion length. We predict the existence of the “effect of the chiral polarization of a pure spin current,” i.e., the emergence of the spin current with longitudinal (transverse) polarization, which depends on the spiral chirality, upon the injection of a pure spin current with the transverse (longitudinal) polarization relative to the spiral axis.

Sobre autores

I. Yasyulevich

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: yasyulevich@imp.uran.ru
620137, Yekaterinburg, Russia

N. Bebenin

Institute of Natural Sciences and Mathematics, Ural Federal University named after the first president of Russia B.N. Yeltsin

Email: yasyulevich@imp.uran.ru
620137, Yekaterinburg, Russia

V. Ustinov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Natural Sciences and Mathematics, Ural Federal University named after the first president of Russia B.N. Yeltsin

Autor responsável pela correspondência
Email: ustinov@imp.uran.ru
620137, Yekaterinburg, Russia; 620002, Yekaterinburg, Russia

Bibliografia

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys.Rev. Lett. 61, 2472 (1988).
  2. Spin Current, ed. by S. Maekawa, S.O. Valenzuela, E. Saitoh, and T. Kimura, Oxford University Press, New York (2017), p. 520.
  3. С.А. Никитов, Д.В. Калябин, И.В. Лисенков, А.Н. Славин, Ю.Н. Барабаненков, С.А. Осокин, А.В. Садовников, Е.Н. Бегинин, М.А. Морозова, Ю.П.Шараевский, Ю.А. Филимонов, Ю.В. Хивинцев, С.Л. Высоцкий, В.К. Сахаров, Е.С. Павлов, УФН 185, 1099 (2015).
  4. М.И. Дьяконов, В.И. Перель, Письма в ЖЭТФ 13, 657 (1971).
  5. M. I. Dyakonov and V. I. Perel, Phys. Lett.A 35, 459 (1971).
  6. J.E. Hirsch, Phys.Rev. Lett. 83, 1834 (1999).
  7. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev.Mod.Phys. 90, 015005 (2018).
  8. D. Xiong, Y. Jiang, K. Shi, A. Du, Y. Yao, Z. Guo, D. Zhu, K. Cao, S. Peng, W. Cai, D. Zhu, and W. Zhao, Fundamental Research 2, 522 (2022).
  9. H. Chen, Q. Niu, and A.H. MacDonald, Phys. Rev. Lett. 112, 017205 (2014).
  10. Y. Takeuchi, Y. Yamane, J.Y. Yoon, R. Itoh, B. Jinnai, S. Kanai, J. Ieda, S. Fukami, and H. Ohno, Nature Materials 20, 1364 (2021).
  11. Ю.А. Изюмов, УФН 144, 439 (1984).
  12. R. J. Elliott and F.A. Wedgwood, Proc.Phys. Soc. 81, 846 (1963).
  13. R. J. Elliott and F.A. Wedgwood, Proc.Phys. Soc. 84, 63 (1964).
  14. A.A. Fraerman and O.G. Udalov, Phys.Rev.B 77, 094401 (2008).
  15. T. Taniguchi and H. Imamura, Phys.Rev.B 81, 012405 (2010).
  16. J.-i. Kishine and A. S. Ovchinnikov, Sol. St.Phys. 66, 1 (2015).
  17. T. Yokouchi, N. Kanazawa, A. Kikkawa, D. Morikawa, K. Shibata, T. Arima, Y. Taguchi, F. Kagawa, and Y. Tokura, Nat.Commun. 8, 866 (2017).
  18. R. Aoki, Y. Kousaka, and Y. Togawa, Phys.Rev. Lett. 122, 057206 (2019).
  19. V.V. Ustinov and I.A. Yasyulevich, Phys.Rev.B 102, 134431 (2020).
  20. S. Okumura, T. Morimoto, Y. Kato, and Y. Motome, J.Phys.: Conf. Ser. 2164, 012068 (2022).
  21. J. Xiao, A. Zangwill, and M.D. Stiles, Phys. Rev.B 73, 054428 (2006).
  22. H. Watanabe, K. Hoshi, and J.-i. Ohe, Phys. Rev.B 94, 125143 (2016).
  23. S. Okumura, H. Ishizuka, Y. Kato, J.-i. Ohe, and Y. Motome, Appl.Phys. Lett. 115, 012401 (2019).
  24. V. Ustinov, N. Bebenin, and I. Yasyulevich, J.Phys.: Conf. Ser. 1389, 012151 (2019).
  25. В.В. Устинов, И.А. Ясюлевич, Физика металлов и металловедение 121, 257 (2020).
  26. Е.А. Караштин, ФТТ 62, 1482 (2020).
  27. A. Aqeel, N. Vlietstra, J.A. Heuver, G.E.W. Bauer, B. Noheda, B. J. van Wees, and T.T.M. Palstra, Phys.Rev.B 92, 224410 (2015).
  28. A. Aqeel, N. Vlietstra, A. Roy, M. Mostovoy, B. J. van Wees, and T.T.M. Palstra, Phys.Rev.B 94, 134418 (2016).
  29. A. Aqeel, M. Mostovoy, B. J. van Wees, and T.T.M. Palstra, J.Phys.D: Appl.Phys. 50, 174006 (2017).
  30. С.В. Вонсовский, Магнетизм, Наука, Москва (1971), c. 1032.
  31. H.C. Torrey, Phys.Rev. 104, 563 (1956).
  32. C. Heide, Phys.Rev.B 65, 054401 (2001).
  33. Л.С. Левитов, Ю.В. Назаров, Г.М. Элиашберг, ЖЭТФ 88, 229 (1985).
  34. T. Furukawa, Y. Shimokawa, K. Kobayashi, and T. Itou, Nat.Commun. 8, 954 (2017).
  35. T. Furukawa, Y. Watanabe, N. Ogasawara, K. Kobayashi, and T. Itou, Phys.Rev.Res. 3, 023111 (2021).
  36. Y. Nabei, D. Hirobe, Y. Shimamoto, K. Shiota, A. Inui, Y. Kousaka, Y. Togawa, and H.M. Yamamoto, Appl.Phys. Lett. 117, 052408 (2020).
  37. A. Inui, R. Aoki, Y. Nishiue, K. Shiota, Y. Kousaka, H. Shishido, D. Hirobe, M. Suda, J.-i. Ohe, J. I. Kishine, H.M. Yamamoto, and Y. Togawa, Phys.Rev. Lett. 124, 166602 (2020).
  38. K. Shiota, A. Inui, Y. Hosaka, R. Amano, Y. Onuki, M. Hedo, T. Nakama, D. Hirobe, J.-i. Ohe, J.-i. Kishine, H.M. Yamamoto, H. Shishido, and Y. Togawa, Phys.Rev. Lett. 127, 126602 (2021).
  39. H. Shishido, R. Sakai, Y. Hosaka, and Y. Togawa, Appl.Phys. Lett. 119, 182403 (2021).
  40. J. Bass and W.P. Pratt Jr, J.Phys.: Cond.Matt. 19, 183201 (2007).
  41. C. Fang, C.H. Wan, B. S. Yang, J.Y. Qin, B. S. Tao, H. Wu, X. Zhang, X. F. Han, A. Hoffmann, X.M. Liu, and Z.M. Jin, Phys.Rev.B 96, 134421 (2017).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies