Spektral'nye osobennosti fotoelektricheskogo effekta v smesevoy donorno-aktseptornoy kompozitsii ftalotsianina tsinka i fullerena ZnPc: C70

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Spectral singularities of the ampere–watt sensitivity of photoelectric structures consisting of a transparent indium–tin oxide electrode, a photosensitive organic layer, and an aluminum electrode have been studied. The structures have been formed on a quartz glass substrate. The photosensitive layer has been vacuum-evaporated either from zinc phthalocyanine ZnPc (exhibiting donor properties) and C70 fullerene (acceptor) organic precursors or from a ZnPc:Cr70 donor–acceptor blend. Using computer simulation, the structure of absorption bands has been determined in a wide spectral range for all three above systems. This has made it possible to calculate the absorbed and reflected fractions of radiation incident on the sample and explain the singular spectral behavior of the ampere–watt sensitivity of the ZnPc:C70 blend. It has been shown that the photosensitivity of the blend reaches a maximum near the overlap of the absorption bands of donor and acceptor molecules

作者简介

V. Lazarev

Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences

Email: serguei.palto@gmail.com
119993, Moscow, Russia

A. Geyvandov

Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences

Email: serguei.palto@gmail.com
119993, Moscow, Russia

S. Palto

Institute of Crystallography, Federal Research Center “Crystallography and Photonics,” Russian Academy of Sciences

编辑信件的主要联系方式.
Email: serguei.palto@gmail.com
119993, Moscow, Russia

参考

  1. P. Peumans, S. Uchida, and S.R. Forrest, Nature 425, 158 (2003).
  2. H.-W. Lin, S.-Y. Ku, H.-C. Su et al., Adv. Mater. 17, 2489 (2005).
  3. A. J. Heeger, Adv. Mater. 26, 10 (2014).
  4. В. А. Миличко, А. С. Шалин, И. С. Мухин и др., УФН 186, 801 (2016).
  5. Y. Yuan, T. J. Reece, P. Sharma et al., Nature Mater. 11, 296 (2011).
  6. Y. Yuan, P. Sharma, Zh. Xiao et al., Energy & Environ. Sci. 5, 8558 (2012).
  7. В. А. Бендерский, Е. И. Кац, ЖЭТФ 154, 662 (2018).
  8. V. A. Benderskii and E. I. Kats, High Energy Chem. 52, 400 (2018).
  9. B. Kippelen and J.-L. Bredas, Energy Environ. Sci. 2, 251 (2009).
  10. K. Cnops, B. P. Rand, D. Cheyns et al., Nat.Commun. 5, 3406 (2014).
  11. K. J. Baeg, M. Binda, D. Natali et al., Adv. Mater. 25, 4267 (2013).
  12. E. Manna, T. Xiao, J. Shinaret et al., Electronics 4, 688 (2015).
  13. G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys. Lett. 64, 3422 (1994).
  14. K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram et al., Energy & Environ. Sci. 5, 7042 (2012).
  15. O. Hofmann, P. Miller, P. Sullivan et al., Sens. Actuators B. 106, 878 (2005).
  16. B. Kraabel, C. H. Lee, D. McBranch et al., Chem. Phys. Lett. 213, 389 (1993).
  17. K. Suemori, T. Miyata, T. Yokoyama et al., Appl. Phys. Lett. 86, 063509 (2005).
  18. F. Roth, C. Lupulescu, T. Arion et al., J. Appl. Phys. 115, 033705 (2014).
  19. Л. М. Блинов, В. В. Лазарев, С. Г. Юдин, Кристаллография 58, 908 (2013).
  20. C.-F. Lin, M. Zhang, S.-W. Liu et al., Int. J. Mol. Sci. 12, 476 (2011).
  21. G. Yu, J. Gao, J. C. Hummelen et al., Science. 270, 1789 (1995).
  22. S. R. Cowan, N. Banerji, W. L. Leong et al., Adv. Funct. Mater. 22, 1116 (2012).
  23. D. Beljonne, J. Cornil, L. Mussioli et al., Chem. Mater. 23, 591 (2011).
  24. R.-J. Baeg, M. Binda, D. Natali et al., Adv. Mater. 25, 4267 (2013).
  25. Э.А. Силиньш, М. В. Курик, В. Чапек, Электронные процессы в органических молекулярных кристаллах. Явления локации и поляризации. Зинатне, Рига (1988).
  26. http://emlab.utep.edu/ee5390fdtd.htm
  27. Хим. энцикл. в 5 т.; т. 5 Бол. Росс. Энцикл., Москва (1998), с. 195.
  28. A. B. P. Lever, S. R. Pickens, P. C. Minor et al., J. Am. Chem. Soc. 103, 6800 (1981).
  29. К. В. Зуев, Дисс. канд. техн. наук, РХТУ им. Д. И. Менделеева, Москва (2019).
  30. С. П. Палто, А. В. Алпатова, А. Р. Гейвандов и др., Оптика и спектроскопия 124, 210 (2018).
  31. В. В. Лазарев, Л. М. Блинов, С. Г. Юдин и др., ЖЭТФ 157, 156 (2020).
  32. H. Fujiwara and M. Kondo, Phys. Rev. B. 71, 075109 (2005).
  33. A. D. Raki'c, A. B. Djuriˇs'c, J. M. Elazar et al., Appl. Opt. 37, 5271 (1998).

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##