Microextraction isolation and concentration of mycotoxins for their determination in food products

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Mycotoxins are among the most dangerous natural contaminants of food products. The review discusses the principles of microextraction methods (liquid-liquid and solid-phase microextraction) used for the isolation and concentration of mycotoxins from food products for their subsequent determination by various physico-chemical methods of analysis. The capabilities and limitations of the discussed methods, as well as examples of their practical application, are described.

Негізгі сөздер

Авторлар туралы

A. Pochivalov

St. Petersburg State University

Хат алмасуға жауапты Автор.
Email: alexpochival@bk.ru

Institute of Chemistry

Ресей, St. Petersburg

K. Pavlova

St. Petersburg State University

Email: a.pochivalov@spbu.ru

Institute of Chemistry

Ресей, St. Petersburg

A. Bulatov

St. Petersburg State University

Email: alexpochival@bk.ru

Institute of Chemistry

Ресей, St. Petersburg

Әдебиет тізімі

  1. Ахмадышин Р.А., Канарский А.В., Канарская З.А. Микотоксины — контаминанты кормов // Вестн. Казанского технол. ун-та. 2007. № 2. С. 88.
  2. Регламент комиссии (ЕС) № 1881/2006 от 19 декабря 2006 года, устанавливающий максимальные уровни некоторых контаминантов в пищевых продуктах.
  3. СанПиН 2.3.2.560-96 “Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов”.
  4. FDA Regulatory Guidance for Mycotoxins. A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters by National Grain and Feed Association. 2011.
  5. Технический регламент Таможенного союза ТР ТС 015/2011 “О безопасности зерна”.
  6. Амелин В.Г., Карасева Н.М., Третьяков А.В. Хроматографические методы определения микотоксинов в пищевых продуктах // Журн. аналит. химии. 2013. Т. 68. № 3. С. 212. (Amelin V.G., Karaseva N.M., Tret’Yakov A.V. Сhromatographic methods for the determination of mycotoxins in food products // J. Anal. Chem. 2013. V. 68. № 3. P. 195.) https://doi.org/10.7868/S004445021303002X
  7. Рудаков О.Б., Рудакова Л.В. Хроматография в контроле контаминантов в пищевой продукции // Переработка молока. 2017. Т. 9. № 215. С. 44.
  8. Урусов А.Е., Жердев А.В., Дзантиев Б.Б. Иммунохимические методы анализа микотоксинов (обзор) // Прикладная биохимия и микробиология. 2010. Т. 46. № 3. С. 276. (Urusov A.E., Zherdev A.V., Dzantiev B.B. Immunochemical methods of mycotoxin analysis (review) // Appl. Biochem. Microbiol. 2010. V. 46. № 3. P. 253.) https://doi.org/10.1134/S0003683810030038
  9. Víctor-Ortega M.D., Lara F.J., García-Campaña A.M., del Olmo-Iruela M. Evaluation of dispersive liquid–liquid microextraction for the determination of patulin in apple juices using micellar electrokinetic capillary chromatography // Food Control. 2013. V. 31. № 2. Р. 353. https://doi.org/10.1016/j.foodcont.2012.11.003
  10. Зипаев Д.В., Тулина А.А., Кожухов А.Н. Использование метода капиллярного электрофореза в оценке пищевых продуктов и напитков // Вестн. Воронежского гос. ун-та инженерных технологий. 2020. Т. 82. №1(83). C. 82.
  11. Amoli-Diva M., Taherimaslak Z., Allahyari M., Pourghazi K., Manafi M.H. Application of dispersive liquid–liquid microextraction coupled with vortex-assisted hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry // Talanta. 2015. V. 134. P. 98. https://doi.org/10.1016/j.talanta.2014.11.007
  12. Pi1 J., Jin P., Zhou1 S., Wang L., Wang H., Huang J., Gan L., Yuan T., Fan H. Combination of ultrasonic-assisted aqueous two-phase extraction with solidifying organic drop-dispersive liquid–liquid microextraction for simultaneous determination of nine mycotoxins in medicinal and edible foods by HPLC with in-series DAD and FLD // Food Anal. Methods. 2022. V. 15. P. 428. https://doi.org/10.1007/s12161-021-02134-w
  13. Maham M., Karami-Osboo R., Kiarostami V., Waqif-Husain S. Novel binary solvents-dispersive liquid — liquid microextraction (BS-DLLME) method for determination of patulin in apple juice using high-performance liquid chromatography // Food Anal. Methods. 2012. V. 6. № 3. Р. 761. https://doi.org/10.1007/s12161-012-9483-6
  14. Farhadi K., Maleki R. Dispersive liquid-liquid microextraction followed by HPLC-DAD as an efficient and sensitive technique for the determination of patulin from apple juice and concentrate samples // J. Chin. Chem. Soc. 2011. V. 58. № 3. P. 340. https://doi.org/10.1002/jccs.201190035
  15. Rahmani M., Ghasemi E., Sasani M. Application of response surface methodology for air assisted-dispersive liquid-liquid microextraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup // Talanta. 2017. V. 165. P. 27. https://doi.org/10.1016/j.talanta.2016.12.031
  16. Амелин В.Г., Карасева Н.М., Третьяков А.В. Сочетание QuEChERS и дисперсионной жидкостно-жидкостной микроэкстракции при определении афлатоксинов В1 и М1 в молоке и молочных продуктах методом ВЭЖХ // Журн. аналит. химии. 2014. Т. 69. № 5. С. 510. (Karaseva N.M., Amelin V.G., Tret’Yakov A.V. QUECHERS coupled to dispersive liquid-liquid microextraction for the determination of aflatoxins B1 and M1 in dairy foods by HPLC // J. Anal. Chem. 2014. V. 69. № 5. С. 461.) https://doi.org/10.1134/S1061934814030071
  17. Afzali D., Ghanbarian M., Mostafavi A., Shamspur T., Ghaseminezhad S. A novel method for high preconcentration of ultra trace amounts of B1, B2, G1 and G2 aflatoxins in edible oils by dispersive liquid–liquid microextraction after immunoaffinity column clean-up // J. Chromatogr. A. 2012. V. 1247. P. 35. https://doi.org/10.1016/j.chroma.2012.05.051
  18. Ballesteros-Gómez A., Rubio S., Pérez-Bendito D. Potential of supramolecular solvents for the extraction of contaminants in liquid foods // J. Chromatogr. A. 2009. V. 1216. № 3. Р. 530. https://doi.org/10.1016/j.chroma.2008.06.029
  19. Feizy J., Es’haghi Z., Lakshmipathy R. Aflatoxins’ clean-up in food samples by graphene oxide–polyvinyl poly pyrrolidone — hollow fiber solid-phase microextraction // Chromatographia. 2020. V. 83. P. 385. https://doi.org/10.1007/s10337-019-03851-5
  20. Gracia L. Multiclass mycotoxin analysis in Silybum marianum by ultra high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction // J. Chromatogr. A. 2013. V. 1282. P. 11. https://doi.org/10.1016/j.chroma.2013.01.072
  21. Salim S.A., Sukor R., Ismail M.N., Selamat J. Dispersive liquid–liquid microextraction (DLLME) and LC—MS/MS analysis for multi-mycotoxin in rice bran: Method development, optimization and validation // Toxins. 2021. V. 13. № 4. Р. 280. https://doi.org/10.3390/toxins13040280
  22. Li X., Li H., Ma W., Guo Z., Li X., Li X., Zhang Q. Determination of patulin in apple juice by single-drop liquid-liquid-liquid microextraction coupled with liquid chromatography-mass spectrometry // Food Chem. 2018. V. 257. P. 1. https://doi.org/10.1016/j.foodchem.2018.02.077
  23. Alsharif A.M.A., Choo Y.-M., Tan G.H., Abdulra’uf L.B. Determination of mycotoxins using hollow fiber dispersive liquid–liquid–microextraction (HF-DLLME) prior to high-performance liquid chromatography — tandem mass spectrometry (HPLC — MS/MS) // Anal. Lett. 2019. V. 52. № 12. Р. 1976. https://doi.org/10.1080/00032719.2019.1587766
  24. Амелин В.Г., Никешина Т.Б., Карасева Н.М. Экспрессный способ определения афлатоксинов В1, B2, G1, G2 в зерне и кормах // Российский ветеринарный журнал. Сельскохозяйственные животные. 2013. № 3. С. 12.
  25. Quinto M., Spadaccino G., Palermo C., Centonze D. Determination of aflatoxins in cereal flours by solid-phase microextraction coupled with liquid chromatography and post-column photochemical derivatization-fluorescence detection // J. Chromatogr. A. 2009. V. 1216. № 49. Р. 8636. https://doi.org/10.1016/j.chroma.2009.10.031
  26. Федотов П.С., Малофеева Г.И., Савонина Е.Ю., Спиваков Б.Я. Твердофазная экстракция органических веществ: нетрадиционные методы и подходы // Журн. аналит. химии. 2019. Т. 74. № 3. С. 163. (Fedotov P.S., Malofeeva G.I., Savonina E.Y., Spivakov B.Y. Solid -phase extraction of organic substances: unconventional methods and approaches// J. Anal. Chem. 2019. V. 74. № 3. P. 163.) https://doi.org/10.1134/S1061934819030043
  27. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Дисперсионная жидкостно-жидкостная микроэкстракция органических соединений. Обзор обзоров // Журн. аналит. химии. 2020. Т. 75. № 10. С. 867. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Dispersive liquid-liquid microextraction of organic compounds: An overview of reviwes // J. Anal. Chem. 2020. V. 75. № 10. P. 867.) https://doi.org/10.1134/S1061934820100056
  28. Дмитриенко С.Г., Апяри В.В., Толмачева В.В., Горбунова М.В. Жидкостная экстракция органических соединений в каплю экстрагента. Обзор обзоров // Журн. аналит. химии. 2021. Т. 76. № 8. С. 675. (Dmitrienko S.G., Apyari V.V., Tolmacheva V.V., Gorbunova M.V. Liquid-liquid extraction of organic compounds into a single drop of the extractant: Overview of reviews // J. Anal. Chem. 2021. V. 76. № 8. P. 907.) https://doi.org/10.1134/S1061934821080049
  29. Дмитриенко С.Г., Апяри В.В., Горбунова М.В., Толмачева В.В., Золотов Ю.А. Гомогенная жидкостная микроэкстракция органических соединений // Журн. аналит. химии. 2020. Т. 75. № 11. С. 963. (Dmitrienko S.G., Apyari V.V., Gorbunova M.V., Tolmacheva V.V., Zolotov Y.A. Homogeneous liquid-liquid microextraction of organic compounds // J. Anal. Chem. 2020. Т. 75. № 11. С. 1371.) https://doi.org/10.1134/S1061934820110052
  30. Зайцев В.Н., Зуй М. Твердофазное микроэкстракционное концентрирование // Журн. аналит. химии. 2014. Т. 69. № 8. С. 1. https://doi.org/10.7868/S0044450214080131
  31. Maham M., Kiarostami V., Waqif-Husain S., Karami-Osboo R., Mirabolfathy M. Analysis of ochratoxin A in malt beverage samples using dispersive liquid–liquid microextraction coupled with liquid chromatography-fluorescence detection // Czech. J. Food Sci. 2013. V. 31. № 5. P. 520. https://doi.org/10.17221/543/2012-CJFS
  32. Lai X., Ruan C., Liu R., Liu C. Application of ionic liquid-based dispersive liquid–liquid microextraction for the analysis of ochratoxin A in rice wines // Food Chem. 2014. V. 161. P. 317. https://doi.org/10.1016/j.foodchem.2014.04.033
  33. Karami-Osboo R., Miri R., Javidnia K., Kobarfard F., AliAbadi M.H.S., Maham M. A validated dispersive liquid-liquid microextraction method for extraction of ochratoxin A from raisin samples // J. Food Sci. Technol. 2013. V. 52. № 4. Р. 2440. https://doi.org/10.1007/s13197-013-1215-4
  34. Antep H.M., Merdivan M. Determination of ochratoxin A in grape wines after dispersive liquid–liquid microextraction using high performance thin layer and liquid chromatography– fluorescence detection // Hacettepe J. Biol. Chem. 2012. V. 40. № 2. Р. 155.
  35. Hamed A.M., Abdel-Hamid M., Gámiz-Gracia L., García-Campaña A.M., Arroyo-Manzanares N. Determination of aflatoxins in plant-based milk and dairy products by dispersive liquid–liquid microextraction and high-performance liquid chromatography with fluorescence detection // Anal. Lett. 2018. V. 52. № 2. Р. 363. https://doi.org/10.1080/00032719.2018.1467434
  36. Campone L., Piccinelli A.L., Celano R., Rastrelli L. Application of dispersive liquid–liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products // J. Chromatogr. A. 2011. V. 1218. № 42. Р. 7648. https://doi.org/10.1016/j.chroma.2011.05.028
  37. Амелин В.Г., Карасева Н.М., Третьяков А.В. Сочетание метода QUECHERS с дисперсионной жидкостно-жидкостной микроэкстракцией и получением производных при определении микотоксинов в зерне и комбикормах газожидкостной хроматографией с детектором по захвату электронов // Журн. аналит. химии. 2013. Т. 68. № 6. С. 612. (Amelin V.G., Karaseva N.M., Tret’Yakov A.V. Combination of the QUECHERS method with dispersive liquid-liquid microextraction and derivatization in the determination of mycotoxins in grain and mixed feed by gas-liquid chromatography with an electron-capture detector // J. Anal. Chem. 2013. V. 68. № 6. P. 552—557.) https://doi.org/10.7868/S0044450213060029
  38. Pallarés N., Font G., Mañes J., Ferrer E. Multimycotoxin LC—MS/MS analysis in tea beverages after dispersive liquid–liquid microextraction (DLLME) // J. Agric. Food Chem. 2017. V. 65. № 47. Р. 10282. https://doi.org/10.1021/acs.jafc.7b03507
  39. Bozkurt S.S., Işık G. Ionic liquid based dispersive liquid–liquid microextraction for preconcentration of zearalenone and its determination in beer and cereal samples by high-performance liquid chromatography with fluorescence detection // J. Liq. Chromatogr. Relat. Technol. 2015. V. 38. № 17. Р. 1601. https://doi.org/10.1080/10826076.2015.1079721
  40. Pochivalov A., Pavlova K., Garmonov S., Bulatov A. Behaviour of deep eutectic solvent based on terpenoid and long-chain alcohol during dispersive liquid-liquid microextraction: Determination of zearalenone in cereal samples // J. Mol. Liq. 2022. V. 366. Article 120231. https://doi.org/10.1016/j.molliq.2022.120231
  41. Simão V., Merib J., Dias A.N., Carasek E. Novel analytical procedure using a combination of hollow fiber supported liquid membrane and dispersive liquid–liquid microextraction for the determination of aflatoxins in soybean juice by high performance liquid chromatography — Fluorescence detector // Food Chem. 2016. V. 196. P. 292. https://doi.org/10.1016/j.foodchem.2015.09.018
  42. Zhou J., Xu J.-J., Huang B.-F., Cai Z.-X., Ren Y.-P. High-performance liquid chromatographic determination of multi-mycotoxin in cereals and bean foodstuffs using interference-removal solid-phase extraction combined with optimized dispersive liquid-liquid microextraction // J. Sep. Sci. 2017. V. 40. № 10. Р. 2141. https://doi.org/10.1002/jssc.201601326
  43. Sebastià A., Calleja-Gómez M., Pallarés N., Barba F.J., Berrada H., Ferrer E. Impact of combined processes involving ultrasound and pulsed electric fields on ENNs, and OTA mitigation of an orange juice-milk based beverage // Foods. 2023. V. 12. № 8. Р. 1582. https://doi.org/10.3390/foods12081582
  44. Zhao Z., Yang X., Zhao X., Bai B., Yao C., Liu N., Zhou C. Vortex-assisted dispersive liquid-liquid microextraction for the analysis of major Aspergillus and Penicillium mycotoxins in rice wine by liquid chromatography-tandem mass spectrometry // Food Control. 2017. V. 73. P. 862. https://doi.org/10.1016/j.foodcont.2016.09.035
  45. Bochetto A., Merino N., Kaplan M., Guiñez M., Cerutti S. Design of a combined microextraction and back-extraction technique for the analysis of mycotoxins in amaranth seeds // J. Food Compos. Anal. 2021. V. 98. Article 103818. https://doi.org/10.1016/j.jfca.2021.103818
  46. Antep H.M., Merdivan M. Development of new dispersive liquid–liquid microextraction technique for the identification of zearalenone in beer // Anal. Methods. 2012. V. 4. № 12. Р. 4129. https://doi.org/10.1039/C2AY25665G
  47. Rempelaki I.E., Sakkas V.A., Albanis T.A. The development of a sensitive and rapid liquid-phase microextraction method followed by liquid chromatography mass spectrometry for the determination of zearalenone residues in beer samples // Anal. Methods. 2015. V. 7. № 4. Р. 1446. https://doi.org/10.1039/C4AY01754D
  48. D’Orazio G., Asensio-Ramos M., Hernández-Borges J., Rodríguez-Delgado M.Á., Fanali S. Evaluation of the combination of a dispersive liquid-liquid microextraction method with micellar electrokinetic chromatography coupled to mass spectrometry for the determination of estrogenic compounds in milk and yogurt // Electophoresis. 2015. V. 36. № 4. Р. 615. https://doi.org/10.1002/elps.201400452
  49. Li S., Li Y., Wang Y., Zhou W., Gao H., Zhang, S. Water-based slow injection ultrasound-assisted emulsification microextraction for the determination of deoxynivalenol and de-epoxy-deoxynivalenol in maize and pork samples // Anal. Bioanal. Chem. 2013. V. 405. № 12. Р. 4307. https://doi.org/10.1007/s00216-013-6792-6
  50. Плетнев И.В., Смирнова С.В., Шаров А.В., Золотов Ю.А. Экстракционные растворители нового поколения: от ионных жидкостей и двухфазных водных систем // Успехи химии. 2021. Т. 90. № 9. С. 1109. (Pletnev I.V., Smirnova S.V., Sharov A.V., Zolotov Yu.A. New generation extraction solvents: From ionic liquids and aqueous biphasic systems to deep eutectic solvents // Russ. Chem. Rev. 2021. V. 90. № 9. P. 1109.) https://doi.org/10.1070/RCR5007
  51. Плетнев И.В., Смирнова С.В., Шведене Н.В. Новые направления применения ионных жидкостей в аналитической химии. 1. Жидкостная экстракция // Журн. аналит. химии. 2019. Т. 74. № 7. С. 483. (Pletnev I.V., Smirnova S.V., Shvedene N.V. New directions in using ionic liquids in analytical chemistry. 1: Liquid-liquid extraction // J. Anal. Chem. 2019. V. 74. № 7. P. 625.) https://doi.org/10.1134/S1061934819070062
  52. Смирнова С.В., Плетнев И.В. Новые ионные жидкости для экстракционного концентрирования // Журн. налит. химии. 2019. Т. 74. № 1. С. 3. (Smirnova S.V., Pletnev I.V. New ionic liquids for extraction preconcentration // J. Anal. Chem. 2019. V. 74. № 1.) https://doi.org/10.1134/S106193481901009X
  53. Бессонова Е.А., Деев В.А., Карцова Л.А. Дисперсионная жидкостно-жидкостная микроэкстракция пестицидов с применением в качестве экстрагентов ионных жидкостей // Журн. аналит. химии. 2020. Т. 75. № 8. С. 692. (Bessonova E.A., Deev V.A., Kartsova L.A. Dispersive liquid-liquid microextraction of pesticides using ionic liquids as extractants // J. Anal. Chem. 2020. V. 75. № 8. P. 991.) https://doi.org/10.1134/S1061934820080043
  54. Wang L., Luan C., Chen F., Wang R., Shao L. Determination of zearalenone in maize products by vortex-assisted ionic-liquid-based dispersive liquid-liquid microextraction with high-performance liquid chromatography // J. Sep. Sci. 2015. V. 38. № 12. P. 2126. https://doi.org/10.1002/jssc.201500184
  55. Arroyo-Manzanares N., García-Campaña A.M., Gámiz-Gracia L. Comparison of different sample treatments for the analysis of ochratoxin A in wine by capillary HPLC with laser-induced fluorescence detection // Anal. Bioanal. Chem. 2011. V. 401. № 9. P. 2987. https://doi.org/10.1007/s00216-011-5387-3
  56. Gholizadeh S., Mirzaei H., Khandaghi J., Reza Afshar Mogaddam M., Javadi A. Ultrasound–assisted solvent extraction combined with magnetic ionic liquid based-dispersive liquid–liquid microextraction for the extraction of mycotoxins from tea samples // J. Food Compos. Anal. 2022. V. 114. Article 104831. https://doi.org/10.1016/j.jfca.2022.104831
  57. Джавахян М.А., Прожогина Ю.Э. Глубокие эвтектические растворители: история, свойства и перспективы // Хим.-фарм. журн. 2023. Т. 57. № 2. С. 41. https://doi.org/10.30906/0023-1134-2023-57-2-41-45
  58. Милевский Н.А., Зиновьева И.В., Заходяева Ю.А., Вошкин А.А. Экстракционное разделение пары Co/Ni глубоким эвтектическим растворителем Aliquat 336/тимол // Теоретические основы химической технологии. 2022. Т. 56. № 1. С. 48. (Milevsky N.A., Zinovieva I.V., Zakhodyaeva Y.A., Voshkin A.A. Extractive separation of Co/Ni pair with the deep eutectic solvent Aliquat 336/timol // Theor. Found. Chem. Eng. 2022. V. 56. № 1. С. 45.) https://doi.org/10.1134/S0040579522010080
  59. Shishov A. Yu., Markova U.O., Nizov E.R., Melesova M.A., Meshcheva D.A., Krekhova F.M., Bulatov A.V. Ultrasound assistant deep-eutectic-solvent-based liquid–liquid microextraction for the determination of transesterification catalyst in biodiesel samples // Theor. Found. Chem. Eng. 2023. V. 57. P. 104. https://doi.org/10.1134/S004057952301013X
  60. Shishov A., Pochivalov A., Nugbienyo L., Andruch V., Bulatov A. Deep eutectic solvents are not only effective extractants // Trends Anal. Chem, 2020. Article 115956. https://doi.org/10.1016/j.trac.2020.115956
  61. Rezaeefar A., Nemati M., Farajzadeh M.A., Reza Afshar Mogaddam M., Lotfipour F. Application of new N- and S- doped amorphous carbon in D-µSPE and its combination with deep eutectic solvent-based DLLME for the extraction of some mycotoxins from soymilk // Microchem. J. 2022. V. 173. Article 107039. https://doi.org/10.1039/D1AY01057C
  62. Lesan S., Mirzaei H., Khandaghi J., Reza Afshar Mogaddam M., Javadi A. Development of deep eutectic solvent based pressurized liquid extraction combined with dispersive liquid–liquid microextraction; application in extraction of aflatoxins from rice samples before HPLC–FLD // Microchem. J. 2023. V. 190. Article 108554. https://doi.org/10.1016/j.microc.2023.108554
  63. MobinM., Mohammad R.A.M.,Mir A.F., Mahboob N., Farzaneh L. Combination of solvent extraction with deep eutectic solvent based dispersive liquid–liquid microextraction for the analysis of aflatoxin M1 in cheese samples using response surface methodology optimization // J. Sep. Sci. 2021. V. 44. № 7. Р. 1501.
  64. Badali A., Javadi A., Reza Afshar Mogaddam M., Moshak Z. Dispersive solid phase extraction-dispersive liquid–liquid microextraction of mycotoxins from milk samples and investigating their decontamination using microwave irradiations // Microchem. J. 2023. V. 190. Article 108645. https://doi.org/10.1016/j.microc.2023.108645
  65. Елохов А.М., Кудряшова О.С., Леснов А.Е. Анионные поверхностно-активные вещества в экстракции // Вестник Пермского университета. Серия: Химия. 2015. Т. 1. № 17. С. 30.
  66. Штыков С.Н., Горячева И.Ю., Штыкова Л.С. Мицеллы и микроэмульсии в разделении и концентрировании // Журн. аналит. химии. 2003. Т. 58. № 7. С. 732.
  67. Доронин С.Ю., Чернова Р.К. Мицеллярная экстракция поверхностно-активными веществами — как способ концентрирования органических соединений // Бутлеровские сообщения. 2014. Т. 40. № 12. С. 94.
  68. Antep H.M., Merdivan M., Eylul D. Cloud point extraction and determination of cyclopiazonic acid and tenuazonic acid in tomato juice // Hacettepe J. Biol. Chem. 2014. V. 42. № 3. Р. 387.
  69. Yv J., Yang Y. Determination of aflatoxin B1 and B2 in peanut and peanut oil using cloud point extraction followed by ultra-high-performance liquid chromatography // J. Liq. Chromatogr. Relat. Technol. 2013. V. 36. № 10. Р. 1421. https://doi.org/10.1080/10826076.2012.691441
  70. García-Fonseca S., Ballesteros-Gómez A., Rubio S., Pérez-Bendito D. Supramolecular solvent-based microextraction of ochratoxin A in raw wheat prior to liquid chromatography-fluorescence determination // J. Chromatogr. A. 2010. V. 1217. № 16. Р. 2376. https://doi.org/10.1016/j.chroma.2009.10.085
  71. García-Fonseca S., Ballesteros-Gómez A., Rubio S., Pérez-Bendito D. Coacervative extraction of Ochratoxin A in wines prior to liquid chromatography/fluorescence determination // Anal. Chim. Acta. 2008. V. 617. № 1—2. Р. 3. https://doi.org/10.1016/j.aca.2007.11.002
  72. García-Fonseca S., Ballesteros-Gómez A., Rubio S. Restricted access supramolecular solvents for sample treatment in enzyme-linked immuno-sorbent assay of mycotoxins in food // Anal. Chim. Acta. 2016. V. 935. P. 129. https://doi.org/10.1016/j.aca.2016.06.042
  73. García-Fonseca S., Rubio S. Restricted access supramolecular solvents for removal of matrix-induced ionization effects in mass spectrometry: Application to the determination of Fusarium toxins in cereals // Talanta. 2016. V. 148. P. 370. https://doi.org/10.1016/j.talanta.2015.11.014
  74. Caballero-Casero N., García-Fonseca S., Rubio S. Vesicular aggregate-based solventless microextraction of Ochratoxin A in dried vine fruits prior to liquid chromatography and fluorescence detection // Talanta. 2012. V. 89. P. 377. https://doi.org/10.1016/j.talanta.2011.12.046
  75. Caballero-Casero N., García-Fonseca S., Rubio S. Restricted access supramolecular solvents for the simultaneous extraction and cleanup of ochratoxin A in spices subjected to EU regulation // Food Control. 2018. V. 88. P. 33. https://doi.org/10.1016/j.foodcont.2018.01.003
  76. Tang S., Qi T., Ansah P.D., Fouemina N.J.C., Shen W., Basheer C., Lee H.K. Single-drop microextraction // Trends Anal. Chem. 2018. V. 108. P. 306. https://doi.org/10.1016/j.trac.2018.09.016
  77. Romero-González R., Frenich A.G., Vidal J.L.M., Aguilera-Luiz M.M. Determination of ochratoxin A and T-2 toxin in alcoholic beverages by hollow fiber liquid phase microextraction and ultra high-pressure liquid chromatography coupled to tandem mass spectrometry // Talanta. 2010. V. 82. № 1. Р. 171. https://doi.org/10.1016/j.talanta.2010.04.016
  78. Huang S., Hu D., Wang Y., Zhu F., Jiang R., Ouyang G. Automated hollow-fiber liquid-phase microextraction coupled with liquid chromatography/tandem mass spectrometry for the analysis of aflatoxin M1 in milk // J. Chromatogr. A. 2015. V. 1416. P. 137. https://doi.org/10.1016/j.chroma.2015.09.012
  79. Carasek E., Merib J. Membrane-based microextraction techniques in analytical chemistry: A review // Anal. Chim. Acta. 2015. V. 880. P. 8. https://doi.org/10.1016/j.aca.2015.02.049
  80. Темердашев З.А., Мусорина Т.Н., Червонная Т.А., Арутюнян Ж.В. Возможности и ограничения методов твердофазной и жидкостной экстракции при определении полициклических ароматических углеводородов в объектах окружающей среды // Журн. аналит. химии. 2021. Т. 76. № 12. С. 1059. (Temerdashev Z.A., Musorina T.N., Chervonnaya T.A., Arutyunyan Z.V. Possibilities and limitations of solid-phase and liquid extraction for the determination of polycyclic aromatic hydrocarbons in environmental samples // J. Anal. Chem. 2021. V. 76. № 12. P. 1357.) https://doi.org/10.1134/S1061934821120133
  81. Tzanetou E.N., Kasiotis K.M. A mini review on solid phase micro-extraction applications in mass spectrometry detection of toxins // World J. Anal. Chem. 2013. V. 1. № 1. Р. 14. https://doi.org/10.12691/wjac-1-1-3
  82. Zhang X., Cudjoe E., Vuckovic D., Pawliszyn J. Direct monitoring of ochratoxin A in cheese with solid-phase microextraction coupled to liquid chromatography-tandem mass spectrometry // J. Chromatogr. A. 2009. V. 1216. № 44. Р. 7505. https://doi.org/10.1016/j.chroma.2009.03.009
  83. Aresta A., Palmisano F., Vatinno R., Zambonin C.G. Ochratoxin A determination in beer by solid-phase microextraction coupled to liquid chromatography with fluorescence detection: A fast and sensitive method for assessment of noncompliance to legal limits // J. Agric. Food Chem. 2006. V. 54. № 5. Р. 1594. https://doi.org/10.1021/jf052666o
  84. Aresta A., Vatinno R., Palmisano F., Zambonin, C.G. Determination of Ochratoxin A in wine at sub ng/mL levels by solid-phase microextraction coupled to liquid chromatography with fluorescence detection // J. Chromatogr. A. 2006. V. 1115. № 1—2. Р. 196. https://doi.org/10.1016/j.chroma.2006.02.092
  85. Zambonin C., Monaci L., Aresta A. Determination of cyclopiazonic acid in cheese samples using solid-phase microextraction and high performance liquid chromatography // Food Chem. 2001. V. 75. № 2. Р. 249. https://doi.org/10.1016/S0308-8146(01)00218-7
  86. Zambonin C.G., Monaci L., Aresta A. Solid-phase microextraction-high performance liquid chromatography and diode array detection for the determination of mycophenolic acid in cheese // Food Chem. 2002. V. 78. № 2. Р. 249. https://doi.org/10.1016/S0308-8146(02)00108-5
  87. Aresta A., Cioffi N., Palmisano F., Zambonin C.G. Simultaneous determination of ochratoxin A and cyclopiazonic, mycophenolic, and tenuazonic acids in cornflakes by solid-phase microextraction coupled to high-performance liquid chromatography // J. Agric. Food Chem. 2003. V. 51. № 18. P. 5232. https://doi.org/10.1021/jf034385r
  88. Díaz-Bao M., Regal P., Barreiro R., Fente C.A., Cepeda A.A facile method for the fabrication of magnetic molecularly imprinted stir-bars: A practical example with aflatoxins in baby foods // J. Chromatogr. A. 2016. V. 1471. P. 51. https://doi.org/10.1016/j.chroma.2016.10.022
  89. Постнов В.Н., Родинков О.В., Москвин Л.Н., Новиков А.Г., Бугайченко А.С., Крохина О.А. От углеродных наноструктур к высокоэффективным сорбентам для хроматографического разделения и концентрирования // Успехи химии. 2016. Т. 85. № 2. С. 115. (Postnov V.N., Rodinkov O.V., Moskvin L.N., Novikov A.G., Bugaichenko A.S., Krokhina O.A. From carbon nanostructures to high-perfomance sorbents for chromatographic separation and preconcentration // Russ. Chem. Rev. 2016. V. 85. № 2. P. 115.) https://doi.org/10.1070/RCR4551
  90. Ghorbani M., Aghamohammadhassan M., Chamsaz M., Akhlaghi H., Pedramrad T. Dispersive solid phase microextraction // Trends Anal. Chem. 2019. V. 118. P. 793. https://doi.org/10.1016/j.trac.2019.07.012
  91. Amde M., Temsgen A., Dechassa N. Ionic liquid functionalized zinc oxide nanorods for solid-phase microextraction of aflatoxins in food products // J. Food Compost. Anal. 2020. V. 91. Article 103528. https://doi.org/10.1016/j.jfca.2020.103528
  92. Rezaeefar А., Nemati M., Farajzadeh M.A., Reza Afshar Mogaddam M., Lotfipour F. Development of N and S doped carbon sorbent-based dispersive micro solid phase extraction method combined with dispersive liquid-liquid microextraction for selected mycotoxins from soymilk samples // Microchem. J. 2022. V. 173. Article 107039. https://doi.org/10.1016/j.microc.2021.107039
  93. Толмачева В.В., Апяри В.В., Кочук Е.В., Дмитриенко С.Г. Магнитные сорбенты на основе наночастиц оксидов железа для выделения и концентрирования органических соединений // Журн. аналит. химии. 2016. Т. 71. № 4. С. 339. (Tolmacheva V.V., Apyari V.V., Kochuk E.V., Dmitrienko S.G. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentrarion of organic compounds // J. Anal. Chem. 2016. Т. 71. № 4. С. 321.) https://doi.org/10.1134/S1061934816040079
  94. Zhang Y., Liu D., Peng J., Cui Y., Shi Y., He H. Magnetic hyperbranched molecularly imprinted polymers for selective enrichment and determination of zearalenone in wheat proceeded by HPLC-DAD analysis // Talanta. 2019. V. 209. Article 120555. https://doi.org/10.1016/j.talanta.2019.120555
  95. Jie Wang J., Huang O., Guo W., Guo D., Han Z., Nie D. Fe3O4@COF(TAPT–DHTA) nanocomposites as magnetic solid-phase extraction adsorbents for simultaneous determination of 9 mycotoxins in fruits by UHPLC—MS/MS // Toxins. 2023. V. 15. № 2. С. 117. https://doi.org/10.3390/toxins15020117
  96. García-Nicolás M., Arroyo-Manzanares N., Viñas P. Dispersive magnetic solid-phase extraction as a novelty sample treatment for the determination of the main aflatoxins in paprika // Toxins. 2023. V. 15. № 2. Р. 160. https://doi.org/10.3390/toxins15020160
  97. Kholová A., Lhotská I., Erben J., Chvojka J., Švec F., Solich P., Šatínský D. Comparison of nanofibers, microfibers, nano/microfiber graphene doped composites, molecularly imprinted polymers, and restricted access materials for on-line extraction and chromatographic determination of citrinin, zearalenone, and ochratoxin A in plant-based milk beverages // Microchem. J. 2023. V. 191. Article 108937. https://doi.org/10.1016/j.microc.2023.108937
  98. Kataoka H., Itano M., Ishizaki A., Saito K. Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry // J. Chromatogr. A. 2009. V. 1216. № 18. P. 3746. https://doi.org/10.1016/j.chroma.2009.03.017
  99. Saito K., Ikeuchi R., Kataoka H. Determination of ochratoxins in nuts and grain samples by in-tube solid-phase microextraction coupled with liquid chromatography–mass spectrometry // J. Chromatogr. A. 2012. V. 1220. P. 1. https://doi.org/10.1016/j.chroma.2011.11.008
  100. Wu F., Xu C., Jiang N., Wang J., Ding C.-F. Poly (methacrylic acid-co-diethenyl-benzene) monolithic microextraction column and its application to simultaneous enrichment and analysis of mycotoxins // Talanta. 2018. V. 178. P. 1. http://dx.doi.org/10.1016/j.talanta.2017.08.030

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>