МЕТОДЫ ВНЕЛАБОРАТОРНОГО АНАЛИЗА С ИСПОЛЬЗОВАНИЕМ СМАРТФОНА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В обзоре рассмотрены методы анализа с помощью портативных устройств с применением смартфона. Обзор охватывает работы 2015–2024 гг. с акцентом на последние годы. Приведены ссылки на обзоры в основном последних пяти лет. Рассмотрены устройства, используемые в сочетании со смартфоном (от подставок для размещения смартфона до портативных видимых, КР- и ИК-спектрометров, микроскопов и цитометров), амперометрические и потенциометрические устройства, портативные микрофиioidнные анализаторы. Рассмотрены варианты использования смартфона в портативных устройствах для иммунного анализа, для проведения полимеразной цепной реакции и в других вариантах определения нуклеотидных последовательностей, в микрофиоидных устройствах, в методах разделения. Рассмотрены бумажные тест-системы, фотонные кристаллы, нанозимы и другие специальные приемы (оптоэлектросмачивание, электрохемилюминесценция, гиперспектральная визуализация, спектроскопия затухающей волны). Перечислены основные объекты анализа и аналиты.

Об авторах

М. К Беклемишев

Московский государственный университет имени М.В. Ломоносова

Email: beklem@inbox.ru
химический факультет Москва, Россия

Список литературы

  1. Соловьева Н. Глобальный рынок смартфонов: итоги 2024 года. https://dzen.ru/a/Z26a-Zw91QFdwR6s (дата обращения 11.04.2025).
  2. Majumder S., Deen M.J. Smartphone sensors for health monitoring and diagnosis // Sensors. 2019. V. 19. № 9. Article 2164. https://doi.org/10.3390/s19092164
  3. Silva G.M.E., Campos D.F., Brasil J.A.T., Tremblay M., Mendiondo E.M., Ghiglieno F. Advances in technological research for online and in situ water quality monitoring – A review // Sustainability. 2022. V. 14. № 9. Article 5059. https://doi.org/10.3390/su14095059
  4. Yuan X., Glidle A., Yang Z., Wang B. Rapid enzymatic assays for fecal contamination in aquatic environment: Challenges, advances and prospects // Trends Anal. Chem. 2024. V. 176. Article 117768. https://doi.org/10.1016/j.trac.2024.117768
  5. РФ-анализатор Skyray Explorer 5000 для металлов и сплавов. https://lucon.pro/es/analisys-china/skyray-explorer-5000-2 (дата обращения 11.04.2025).
  6. Chandra Kishore S., Samikannu K., Atchudan R., Perumal S., Edison T.N.J.I., Alagan M., Sundramoorthy A.K., Lee Y.R. Smartphone-operated wireless chemical sensors: A review // Chemosensors. 2022. V. 10. P. 55. https://doi.org/10.3390/chemosensors10020055
  7. Seo S.E., Tabei F., Park S.J., Askarian B., Kim K.H., Moallem G., Chong J.W., Kwon O.S. Smartphone with optical, physical, and electrochemical nanobiosensors // J. Ind. Eng. Chem. 2019. V. 77. P. 1. https://doi.org/10.1016/j.jiec.2019.04.037
  8. He X., Ji W., Xing S., Feng Z., Li H., Lu S., Du K., Li X. Emerging trends in sensors based on molecular imprinting technology: Harnessing smartphones for portable detection and recognition // Talanta. 2024. V. 268. № 1. Article 125283. https://doi.org/0.1016/j.talanta.2023.125283
  9. Le L.T.P., Nguyen A.H.Q., Phan L.M.T, Ngo H.T.T, Wang X., Cunningham B., Valera E., Bashir R., Taylor-Robinson A.W., Do C.D. Current smartphone-assisted point-of-care cancer detection: Towards supporting personalized cancer monitoring // Trends Anal. Chem. 2024. V. 174. Article 117681. https://doi.org/10.1016/j.trac.2024.117681
  10. Banik S., Melanthota S.K., Arbaaz, Vaz J.M., Kadambalithaya V.M., Hussain I., Dutta S., Mazumder N. Recent trends in smartphone-based detection for biomedical applications: A review // Anal. Bioanal. Chem. 2021. V. 413. № 9. P. 2389. https://doi.org/10.1007/s00216-021-03184-z
  11. Raten, G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: A review // Sensors. 2017. V. 17. Article 1453. https://doi.org/10.3390/s17061453
  12. Shrivastava A. A Critical review on smartphone based determinations of drugs // Curr. Pharm. Anal. 2023. V. 19. № 3. P. 177. https://doi.org/10.2174/1573412919666230119145548
  13. Xue J., Mao K., Cao H., Feng R., Chen Z., Du W., Zhang H. Portable sensors equipped with smartphones for organophosphorus pesticides detection // Food Chem. 2024. V. 434. Article 137456. https://doi.org/10.1016/j.foodchem.2023.137456
  14. Rezazadeh M., Seidi S., Lid M., Pedersen-Bjergaard S., Yamini Y. The modern role of smartphones in analytical chemistry // Trends Anal. Chem. 2019. V. 118. P. 548. https://doi.org/10.1016/j.trac.2019.06.019
  15. Upadhyay S., Kumar A., Srivastava M., Srivastava A., Dwivedi A., Singh R.K., Srivastava S.K. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring // Talanta. 2024. V. 275. Article 126080. https://doi.org/10.1016/j.talanta.2024.126080
  16. Шаока З.А., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317. https://doi.org/10.31857/S0044450223030131
  17. Li L., Yang C., Li Y., Nie Y., Tian X. Sulfur quantum dot-based portable paper sensors for fluorometric and colorimetric dual-channel detection of cobalt // J. Mater. Sci. 2021. V. 56. P. 4782. https://doi.org/10.1007/s10853-020-05544-z
  18. Pohanka M., Zakova J. Urine test strip quantitative assay with a smartphone camera // Int. J. Anal. Chem. 2024. № 1. Article 6004970. https://doi.org/10.1155/2024/6004970
  19. Mirhosseini S., Nasiri A.F., Khatami F., Mirzaei A., Aghamir S.M.K. A digital image colorimetry system based on smart devices for immediate and simultaneous determination of enzyme-linked immunosorbent assays // Sci. Rep. 2024. V. 14. Article 2587. https://doi.org/10.1038/s41598-024-52931-6
  20. Dutta S. Point of care sensing and biosensing using ambient light sensor of smartphone: Critical review // Trends Anal. Chem. 2019. V. 110. P. 393. https://doi.org/10.1016/j.trac.2018.11.014
  21. Di Nonno S., Ulber R. Smartphone-based optical analysis systems // Analyst. 2021. V. 146. № 9. P. 2749. https://doi.org/10.1039/d1an00025j
  22. GoSpectro: Turn your smartphone into a visible spectrometer https://www.goyalab.com/product/handheld-spectrometer-gospectro/ (дата обращения 11.04.25).
  23. Stephan T. Portable spectroscopy using a gospectro device with a smartphone // J. Gemmol. 2021. V. 37. № 7. P. 683. https://doi.org/10.15506/JoG.2021.37.7.683
  24. Woo Y., Ju Y.-G. Fabrication of a high-resolution smartphone spectrometer for education using a 3D printer // Phys. Educ. 2019. V. 54. Article 15010. https://doi.org/10.1088/1361-6552/aaea0e
  25. Bogucki R., Greggila M., Mallory P., Feng J., Siman K., Khakipoor B., King H., Smith A.W. A 3D-printable dual beam spectrophotometer with multiplatform smartphone adaptor // J. Chem. Educ. 2019. V. 96. P. 1527. https://doi.org/10.1021/acs.jchemed.8b00870
  26. Wilkes T.C., McGonigle A.J., Willmott J.R., Pering T.D., Cook J.M. Low-cost 3D printed 1 nm resolution smartphone sensor-based spectrometer: instrument design and application in ultraviolet spectroscopy // Opt. Lett. 2017. V. 42. P. 4323. https://doi.org/10.1364/OL.42.004323
  27. Edwards P., Zhang C., Zhang B., Hong X., Nagarajan V.K., Yu B., Liu Z. Smartphone based optical spectrometer for diffusive reflectance spectroscopic measurement of hemoglobin // Sci. Rep. 2017. V. 7. Article 12224. https://doi.org/10.1038/s41598-017-12482-5
  28. Spibey C.A., Jackson P., Herick K. A unique charge-coupled device/xenon arc lamp based imaging system for the accurate detection and quantitation of multicolourfluorescence // Electrophoresis. 2001. V. 22. P. 829. https://doi.org/10.1002/1522-2683()22:5<829::AID-ELPS829>3.0.CO;2-U
  29. Velpula R.T., Jain B., Philip M.R., Nguyen H.D., Wang R., Nguyen H.P.T. Epitaxial growth and characterization of AlInN-based core–shell nanowire light emitting diodes operating in the ultraviolet spectrum // Sci. Rep. 2020. V. 10. Article 2547. https://doi.org/10.1038/s41598-020-59442-0
  30. Fang X.-X., Li H.-Y., Fang P., Pan J.-Z., Fang Q. A handheld laser-induced fluorescence detector for multiple applications // Talanta. 2016. V. 150. P. 135. https://doi.org/10.1016/j.talanta.2015.12.018
  31. Darwish G.H., Asselin J., Tran M.V., Gupta R., Kim H., Boudreau D., Algar W.R. Fully self-assembled silica nanoparticle-semiconductor quantum dot supra-nanoparticles and immunoconjugates for enhanced cellular imaging by microscopy and smartphone camera //ACS Appl. Mater. Interfaces. 2020. V. 12. № 30. P. 33530. https://doi.org/10.1021/acsami.0c09553
  32. Yang C., Wang Z., Xiao K., Ushakov N., Kumar S., Li X., Min R. Portable optical fiber biosensors integrated with smartphone: technologies, applications, and challenges [Invited] // Biomed. Opt. Express. 2024. V. 15. № 3. P. 1630. https://doi.org/10.1364/BOE.517534
  33. Rizzi A., Gatta C., Marini D. Color correction between gray world and white patch / Human Vision and Electronic Imaging VII. SPIE, 2002. V. 4662. P. 367. https://doi.org/10.1117/12.469534
  34. Roda A., Michelini E., Cevenini L., Calabria D., Calabretta M.M., Simoni P. Integrating biochemiluminescence detection on smartphones: Mobile chemistry platform for point-of-need analysis // Anal. Chem. 2014. V. 86. № 15. P. 7299. http://dx.doi.org/10.1021/ac502137s
  35. Chang K.-H., Chen R.L.C., Hsieh B.-C., Chen P.-C., Hsiao H.-Y., Nieh C.-H., Cheng T.-J. A hand-held electronic tongue based on fluorometry for taste assessment of tea // Biosens. Bioelectron. 2010. V. 26. P. 1507. http://dx.doi.org/10.1016/j.bios.2010.07.100
  36. Ghosh K.K., Burns L.D., Cocker E.D., Nimmerjahn A., Ziv Y., Gamal A.E., Schnitzer M.J. Miniaturized integration of a fluorescence microscope // Nat. Methods. 2011. V. 8. P. 871. http://dx.doi.org/10.1038/nmeth.1694
  37. Wei Q., Qi H., Luo W., Tseng D., Ki S.J., Wan Z., Göröcs Z., Bentolila L.A., Wu T.T., Sun R., Ozcan A. Fluorescent imaging of single nanoparticles and viruses on a smart phone // ACS Nano. 2013. V. 7. № 10. P. 9147. http://dx.doi.org/10.1021/nn4037706
  38. Shan Y., Wang B., Huang H., Jian D., Wu X., Xue L., Wang S., Liu F. On-site quantitative Hg2+ measurements based on selective and sensitive fluorescence biosensor and miniaturized smartphone fluorescence microscope // Biosens. Bioelectron. 2019. V. 132. P. 238. http://dx.doi.org/10.1016/j.bios.2019.02.062
  39. Lee W.I., Park Y., Park J., Shrivastava S., Son Y.M., Choi H.J., Lee J., Jeon B., Lee H., Lee N.E. A smartphone fluorescence imaging-based mobile biosensing system integrated with a passive fluidic control cartridge for minimal user intervention and high accuracy // Lab on a Chip. 2019. V. 19. № 8. P. 1502. http://dx.doi.org/10.1039/c8lc01344f
  40. Khemtonglang K., Liu W., Lee H., Wang W., Li S., Li Z.Y., Shepherd S., Yang Y., Diel D.G., Fang Y., Cunningham B.T. Portable, smartphone-linked, and miniaturized photonic resonator absorption microscope (PRAM Mini) for point-of-care diagnostics // Biomed. Opt. Express. 2024. V. 15. № 10. P. 5691. http://dx.doi.org/10.1364/BOE.531388
  41. Ludwig S.K.J., Zhu H., Phillips S., Shiledar A., Feng S., Tseng D., van Ginkel L.A., Nielen M.W.F., Ozcan A. Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay // Anal. Bioanal. Chem. 2014. V. 406. P. 6857. https://doi.org/10.1007/s00216-014-7984-4
  42. Амелин В.Г., Емельянов О.Э., Третьяков А.В. Идентификация производителей и определение действующих веществ лекарственных средств цветометрическим методом в ближней ИК-области с использованием смартфона // Журн. аналит. химии. 2024. Т. 79. № 6. C. 653. doi: 10.31857/S0044450224050077
  43. Li L., Wang Y., Jin S., Li M., Chen Q., Ning J., Zhang Z. Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer // Spectrochim. Acta A. 2021. V. 246. Article 118991. https://doi.org/10.1016/j.saa.2020.118991
  44. QE Pro Series Spectrometers. https://www.oceanoptics.com/spectrometer/qe-pro/ (дата обращения 11.04.2025).
  45. Zeng F., Mou T., Zhang C., Huang X., Wang B., Ma X., Guo J. Paper-based SERS analysis with smartphones as Raman spectral analyzers // Analyst. 2019. V. 144. P. 137. https://doi.org/10.1039/C8AN01901K
  46. Yun P., Jinorose M., Devahastin S. Rapid smartphone-based assays for pesticides inspection in foods: current status, limitations, and future directions // Crit. Rev. Food Sci. Nutr. 2024. V. 64(18). P. 6251. https://doi.org/10.1080/10408398.2023.2166897
  47. Hu P., Zhang X., Zhang W., Song L., Wei H., Xiu H., Zhang M., Shang M., Wang C. A SERS-based point-of-care testing approach for efficient determination of diquat and paraquat residues using a flexible silver flower-coated melamine sponge // Food Chem. 2024. V. 454. Article 139831. https://doi.org/10.1016/j.foodchem.2024.139831
  48. Biswas P.C., Rani S., Hossain M.A., Islam M.R., Canning J. Recent developments in smartphone spectrometer sample analysis // IEEE Journal of Selected Topics in Quantum Electronics. 2021. V. 27. № 6. P. 1. https://doi.org/10.1109/JSTQE.2021.3075074
  49. Mazur F., Han Z., Tjandra A.D., Chandrawati R. Digitalization of colorimetric sensor technologies for food safety // Adv. Mater. 2024. V. 36(42). Article e2404274. https://doi.org/10.1002/adma.202404274
  50. Моногарова О.В., Осколок К.В., Апяри В.В. Колориметрия в химическом анализе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 857. https://doi.org/10.1134/S0044450218110063
  51. Апяри В.В., Горбунова М.В., Исаченко А.И., Дмитриенко С.Г., Золотов Ю.А. Использование бытовых цветорегистрирующих устройств в количественном химическом анализе // Журн. аналит. химии. 2017. Т. 72. № 11. С. 963. https://doi.org/10.7868/S0044450217110019
  52. Ulber R. Smartphone-based optical analysis systems // Analyst. 2021. V. 146. № 9. P. 2749. https://doi.org/10.1039/d1an00025j
  53. Geng Z., Miao Y., Zhang G., Liang X. Colorimetric biosensor based on smartphone: State-of-art // Sens. Actuators A. 2023. V. 349. Article 114056. https://doi.org/10.1016/j.sna.2022.114056
  54. Cho H.H., Heo J.H., Jung D.H., Kim S.H., Suh S.-J., Han K.H., Lee J.H. Portable Au nanoparticle-based colorimetric sensor strip for rapid on-site detection of Cd2+ ions in potable water // BioChip J. 2021. V. 15. P. 276. https://doi.org/10.1007/s13206-021-00029-w
  55. Gu Y., Jiao L., Cao F., Liu X., Zhou Y., Yang C., Gao Z., Zhang M., Lin P., Han, Y., Dong D. A real-time detection method of Hg2+ in drinking water via portable biosensor: Using a smartphone as a low-cost micro-spectrometer to read the colorimetric signals // Biosensors (MDPI). 2022. V. 12. Article 1017. https://doi.org/10.3390/bios12111017
  56. Zhang L., Huang D., Zhao P., Yue G., Yang L., Dan W. Colorimetric detection for uranyl ions in water using vinylphosphonic acid functionalized gold nanoparticles based on smartphone // Spectrochim. Acta A. 2022. V. 269. Article 120748. https://doi.org/10.1016/j.saa.2021.120748
  57. Shrivas K., Patel S., Sinha D., Thakur S.S., Patle T.K., Kant T., Dewangan K., Satnami M.L., Nirmalkar J., Kumar S. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic(III) using sucrose modified gold nanoparticles as a nanoprobe // Mikrochim. Acta. 2020. V. 187. № 3. Article 173. https://doi.org/10.1007/s00604-020-4129-7
  58. Shrivas K., Sahu B., Deb M.K., Thakur S.S., Sahu S., Kurrey R., Kant T., Patle T.K., Jangde R. Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach // Microchem. J. 2019. V. 150. Article 104156. https://doi.org/10.1016/j.microc.2019.104156
  59. Ren H., Li F., Yu S., Wu P. The detection of multiple analytes by using visual colorimetric and fluorometric multimodal chemosensor based on the azo dye // Heliyon. 2022. V. 8(8). Article e10216. https://doi.org/10.1016/j.heliyon.2022.e10216
  60. Doǧan V., Isık T., Kılıç V., Horzum N. A field-deployable water quality monitoring with machine learning-based smartphone colorimetry // Anal. Methods. 2022. V. 14(35). P. 3458. https://doi.org/10.1039/D2AY00785A
  61. Ai H., Zhang K., Zhang H. Efficient smartphone-based measurement of phosphorus in water // Water Res X. 2024. V. 22. Article 100217. https://doi.org/10.1016/j.wroa.2024.100217
  62. Mukherjee S., Shah M., Chaudhari K., Jana A., Sudhakar C., Srikrishnarka P., Islam M.R., Philip L., Pradeep T. Smartphone-based fluoride-specific sensor for rapid and affordable colorimetric detection and precise quantification at sub-ppm levels for field applications // ACS Omega. 2020. V. 5(39). P. 25253. https://doi.org/10.1021/acsomega.0c03465
  63. Vellingiri K., Choudhary V., Philip L. Fabrication of portable colorimetric sensor based on basic fuchsin for selective sensing of nitrite ions // J. Environ. Chem. Eng. 2019. V. 7. Article 103374. https://doi.org/10.1016/j.jece.2019.103374
  64. Srivastava S., Vaddadi S., Sadistap S. Smartphone-based System for water quality analysis // Appl. Water. Sci. 2018. V. 8. P. 130. https://doi.org/10.1007/s13201-018-0780-0
  65. Tobiszewski M., Vakh C. Analytical applications of smartphones for agricultural soil analysis // Anal. Bioanal. Chem. 2023. V. 415. № 18. P. 3703. https://doi.org/10.1007/s00216-023-04558-1
  66. Leonard J., Koydemir H.C., Koutnik V.S., Tseng D., Ozcan A., Mohanty S.K. Smartphone-enabled rapid quantification of microplastics // J. Hazard. Mater. Lett. 2022. V. 3. Article 100052. https://doi.org/10.1016/j.hazl.2022.100052
  67. Ramirez-Coronel A.A., Alameri A.A., Altalbawy F., Sanaan Jabbar H., Lateef Al-Awsi G.R., Iswanto A.H., Mustafa Y.F. Smartphone-facilitated mobile colorimetric probes for rapid monitoring of chemical contaminations in food. Advances and Outlook // Crit. Rev. Anal. Chem. 2023. P. 1. https://doi.org/10.1080/10408347.2022.2164173
  68. Rateni G., Dario P., Cavallo F. Smartphone-based food diagnostic technologies: A review // Sensors. 2017. V. 17. Article 1453. https://doi.org/10.3390/s17061453
  69. Yun P., Jinorose M., Devahastin S. Rapid smartphone-based assays for pesticides inspection in foods: Current status, limitations, and future directions // Crit. Rev. Food Sci. Nutr. 2024. V. 64. № 18. P. 6251. https://doi.org/10.1080/10408398.2023.2166897
  70. Kochetkova M., Timofeeva I., Frolova D., Bulatov A. Low-cost digital colorimetric sensor for rapid on-site determination of ascorbic acid in vegetableand fruit-based purees and juices // J. Food Comp. Anal. 2025. V. 137. Part A. Article 106920. https://doi.org/10.1016/j.jfca.2024.106920
  71. Амелин В.Г., Емельянов О.Э., Шаока З.Ч., Третьяков А.В. Определение массовой доли молочного жира в бутилированном молоке бесконтактным цветометрическим методом // Журн. аналит. химии. 2024. Т. 79. №11. C. 1147. https://doi.org/10.31857/S0044450224110014
  72. Bueno L., Meloni G.N., Reddy S.M., Paixao T.R.L.C. Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines // RSC Adv. 2015. V. 5. № 26. P. 20148. https://doi.org/10.1039/C5RA01822F
  73. Ali D.S., Hassan R.O., Othman H.O., Taha H.T., Khaneghah A.M., Smaoui S. Revolutionizing detection: Smartphone-powered colorimetry for the drugs and food analysis // Microchem. J. 2024. V. 205. Article 111228. https://doi.org/10.1016/j.microc.2024.111228
  74. Амелин В.Г., Емельянов О.Э. Неразрушающий контроль макролидов в таблетированных лекарственных средствах методами ближней ИК-Фурье-спектроскопии и цифровой цветометрии // Журн. аналит. химии. 2024. Т. 79. № 12. C. 1327. doi: 10.31857/S0044450224120056
  75. Kant T., Shrivas K., Tejwani A., Tandey K., Sharma A., Gupta S. Progress in the design of portable colorimetric chemical sensing devices // Nanoscale. 2023. V. 15. № 47. P. 19016. https://doi.org/10.1039/d3nr03803c
  76. Mohan B., Sasaki Y., Minami T. Paper-based optical sensor arrays for simultaneous detection of multi-targets in aqueous media: A review // Anal. Chim. Acta. 2024. V. 1313. Article 342741. https://doi.org/10.1016/j.aca.2024.342741
  77. Sidhartha E., Ronald T. Performance evaluation of semi-quantitative urine albumin creatinine ratio using meditape UC-11A strip test. Indones // J. Clin. Pathol. Med. Labor. 2024. V. 30. № 3. P. 213. https://doi.org/10.24293/ijcpml.v30i3.2231
  78. Adlim M., Surbakti M.S., Omar A.F., Rahmayani R.F.I., Hasmar A.H., Ozmen I., Yavuz M. Detecting dissolved mercury(II) ions using chitosan-AgNP strips integrated with smartphones // RSC Adv. 2024. V. 14. № 38. P. 27504. https://doi.org/10.1039/d4ra04901b
  79. Tambi A., Brighu U., Gupta A.B. Assessment of reliability of H2S strip test for the screening of drinking water samples for faecal contamination // Proc. Natl. Acad. Sci. India, Sect. B. 2024. V. 94 P. 407. https://doi.org/10.1007/s40011-023-01544-6
  80. Gunda N.S.K., Naicker S., Shinde S., Kimbahune S., Shrivastava S., Mitra S. Mobile Water Kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli // Anal. Methods. 2014. V. 6. № 16. P. 6236. https://doi.org/10.1039/C4AY01245C
  81. Grosskopf K. A method for the determination of small quantities of mercury in air // Draeger-Hefte. 1937. V. 191. P. 3589.
  82. Nuchtavorn N., Rypar T., Nejdl L., Vaculovicova M., Macka M. Distance-based detection in analytical flow devices: From gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices // Trends Anal. Chem. 2022. V. 150. Article 116581. https://doi.org/10.1016/j.trac.2022.116581
  83. Rypar T., Vojtech A., Marketa V., Macka M. Paper-fluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers // Sens. Actuators B. 2021. V. 341. Article 129999. https://doi.org/10.1016/j.snb.2021.129999
  84. Nah S.H., Kim J.B., Chui H.N.T., Suh Y., Yang S. Enhanced colorimetric detection of volatile organic compounds using a dye‐incorporated photonic crystal‐based sensor array // Adv. Mater. 2024. V. 36(46). Article 2409297. https://doi.org/10.1002/adma.202409297
  85. Sree Sanker S.S., Thomas S., Nalini S., Jacob D.P., Suniya V.S., Madhusoodanan K.N. Smartphone‐based Molecularly imprinted photonic crystal hydrogel sensor for the label‐free detection of Bisphenol A // Macromol. Chem. Phys. 2024. V. 225. Article 2400043. https://doi.org/10.1002/macp.202400043
  86. Sree Sanker S.S., Thomas S., Nalini S., Jacob D.P., Suniya V.S., Madhusoodanan K.N. Development of molecularly imprinted photonic crystal hydrogel based smart sensor for selective uric acid detection // Microchem. J. 2024. V. 201. Article 110693. https://doi.org/10.1016/j.microc.2024.110693
  87. Yang Y., Yu L., Jiang X., Li Y., He X.W., Chen L., Zhang Y. Recent advances in photonic crystal-based chemical sensors // Chem. Commun. 2024. V. 60. P. 9177. https://doi.org/10.1039/D4CC01503G
  88. Song W., Jiang N., Wang H., Vincent J. Use of smartphone videos and pattern recognition for food authentication // Sens. Actuators B. 2020. V. 304. Article 127247. https://doi.org/10.1016/j.snb.2019.127247
  89. Song W., Wang H., Yun Y.-H. Smartphone video imaging: A versatile, low-cost technology for food authentication // Food Chem. 2025. V. 462. Article 140911. https://doi.org/10.1016/j.foodchem.2024.140911
  90. Moayedi S., Xia W., Lundergan L., Yuan H., Xu J. Zwitterionic polymers for biomedical applications: Antimicrobial and antifouling strategies toward implantable medical devices and drug delivery // Langmuir. 2024. V. 40(44). P. 23125. https://doi.org/10.1021/acs.langmuir.4c02664
  91. Zhu Y., Zhang J., Song J., Yang J., Du Z., Zhao W., Hongshuang G., Chiyu W., Qingsi L., Xiaojie S., Zhang L. A multifunctional pro-healing zwitterionic hydrogel for simultaneous optical monitoring of pH and glucose in diabetic wound treatment // Adv. Funct. Mater. 2020. V. 30. № 6. Article 1905493. https://doi.org/10.1002/adfm.201905493
  92. Shin Y.H., Gutierrez-Wing M.T., Choi J.W. Review – Recent progress in portable fluorescence sensors // J. Electrochem. Soc. 2021. V. 168. Article 017502. https://doi.org/10.1149/1945-7111/abd494
  93. Nath P., Mahtaba K.R., Ray A. Fluorescence-based portable assays for detection of biological and chemical analytes // Sensors. 2023. V. 23. Article 5053. https://doi.org/10.3390/s23115053
  94. Patel S., Shrivas K., Sinha D., Karbhal I., Patle T.K. A portable smartphone-assisted digital image fluorimetry for analysis of methiocarb pesticide in vegetables: Nitrogen-doped carbon quantum dots as a sensing probe // Spectrochim. Acta A. 2023. V. 299. Article 122824. https://doi.org/10.1016/j.saa.2023.122824
  95. Амелин В.Г., Шаока З.А.Ч., Большаков Д.С., Третьяков А.В. Цифровая цветометрия индикаторных тест-систем с использованием смартфона и хемометрического анализа при определении хинолонов в лекарственных препаратах // Журн. прикл. спектроскопии. 2022. Т. 89. № 1. С. 84. https://doi.org/10.47612/0514-7506-2022-89-1-84-93
  96. Zhang C., Kim J.P., Creer M., Yang J., Liu Z. A smartphone-based chloridometer for point-of-care diagnostics of cystic fibrosis // Biosens. Bioelectron. 2017. V. 97. P. 164. https://doi.org/10.1016/j.bios.2017.05.048
  97. Ma Y., Cao Y., Li M., Zhang W., Qi X., Gao G., Tang B. A multimode optical sensor for highly selective and sensitive detection of hypochlorous acid in water and body fluid // Anal. Chem. 2024. V. 96(50). P. 20123. https://pubs.acs.org/doi/10.1021/acs.analchem.4c05468
  98. Fu W., Fu X., Li Z., Liu Z., Li X. Advances in smartphone assisted sensors for on-site detection of food safety based on fluorescence on-off-on mode: A review // Chem. Eng. J. 2024. V. 489. Article 151225. https://doi.org/10.1016/j.cej.2024.151225
  99. Xiao M., Liu Z., Xu N., Jiang L., Yang M., Yi C. A smartphone-based sensing system for on-site quantitation of multiple heavy metal ions using fluorescent carbon nanodots-based microarrays // ACS Sensors. 2020. V. 5. P. 870. https://doi.org/10.1021/acssensors.0c00219
  100. Chu S., Wang H., Du Y., Yang F., Yang L., Jiang C. Portable smartphone platform integrated with a nanoprobe-based fluorescent paper strip: Visual monitoring of glutathione in human serum for health prognosis // ACS Sustain. Chem. Eng. 2020. V. 8(22). P. 8175. https://doi.org/10.1021/ACSSUSCHEMENG.0C00690
  101. Wells P.K., Smutok O., Guo Z., Alexandrov K., Katz E. nanostructured interface loaded with chimeric enzymes for fluorimetric quantification of cyclosporine A and FK506 // Anal. Chem. 2022. V. 94. № 20. P. 7303. https://doi.org/10.1021/acs.analchem.2c00650
  102. Guo Z., Smutok O., Johnston W.A., Ayva C.E., Walden P., McWhinney B., Ungerer J.P.J., Melman A., Katz E., Alexandrov K. Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor // Angew. Chem. Int. Ed. 2022. V. 61. № 6. Article e202109005. https://doi.org/10.1002/anie.202109005
  103. Park J. Smartphone based lateral flow immunoassay quantifications // J. Immunol. Methods. 2024. V. 533. Article 113745. https://doi.org/10.1016/j.jim.2024.113745
  104. Eltzov E., Guttel S., Kei A.L.Y, Sinawang P.D., Ionescu R.E., Marks R.S. Lateral flow immunoassays – from paper strip to smartphone technology // Electroanalysis. 2015. V. 27. № 9. P. 2116. https://doi.org/10.1002/elan.201500237
  105. Foysal K.H., Seo S.E., Kim M.J., Kwon O.S., Chong J.W. Analyte quantity detection from lateral flow assay using a smartphone // Sensors. 2019. V. 19. № 21. Article 4812. https://doi.org/10.3390/s19214812
  106. Rong Z., Bai Z., Li J., Tang H., Shen T., Wang Q., Wang C., Xiao R., Wang S. Dual-color magnetic-quantum dot nanobeads as versatile fluorescent probes in test strip for simultaneous point-of-care detection of free and complexed prostate-specific antigen // Biosens. Bioelectron. 2019. V. 145. Article 111719. https://doi.org/10.1016/j.bios.2019.111719
  107. Yalcin E., Erkmen C., Taskin-Tok T., Caglayan M.G. Fluorescence chemosensing of meldonium using a cross-reactive sensor array // Analyst. 2020. V. 145. № 9. P. 3345. https://doi.org/10.1039/d0an00209g
  108. Xin X., Liu H., Zhong N., Zhao M., Zhong D., Chang H., Tang B., He Y., Peng C., He X. A highly sensitive plastic optic-fiber with a molecularly imprinted polymer coating for selective detection of 4-chlorophenol in water // Sens. Actuators B. 2022. V. 357. Article 131468. https://doi.org/10.1016/j.snb.2022.131468
  109. Gou T., Hu J., Wu W., Ding X., Zhou S., Fang W., Mu Y. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy // Biosens. Bioelectron. 2018. V. 120. P. 144. https://doi.org/10.1016/j.bios.2018.08.030
  110. Campuzano S., Pedrero M., Yáñez-Sedeño P., Pingarrón J.M. New challenges in point of care electrochemical detection of clinical biomarkers // Sens. Actuators B. 2021. V. 345. Article 130349. https://doi.org/10.1016/j.snb.2021.130349
  111. van Dongen J.E., Berendsen J.T.W., Steenbergen R.D.M., Wolthuis R.M.F., Eijkel J.C.T., Segerink L.I. Point-of-care CRISPR/Cas nucleic acid detection: Recent advances, challenges and opportunities // Biosens. Bioelectron. 2020. V. 166. Article 112445. https://doi.org/10.1016/j.bios.2020.112445
  112. Gootenberg J.S., Abudayyeh O.O., Lee J.W., Essletzbichler P., Dy A.J., Joung J., Verdine V., Donghia N., Daringer N.M., Freije C.A., Myhrvold C., Bhattacharyya R.P., Livny J., Regev A., Koonin E.V., Hung D.T., Sabeti P.C., Collins J.J., Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2 // Science. 2017. V. 356(6336). P. 438–442. https://doi.org/10.1126/science.aam9321
  113. Katzmeier F., Aufinger L., Dupin A., Quintero J., Lenz M., Bauer L., Klumpe S., Sherpa D., Dürr B., Honemann M., Styazhkin I., Simmel F.C., Heymann M. A low-cost fluorescence reader for in vitro transcription and nucleic acid detection with Cas13a // PloS One. 2019. V. 14. № 12. Article e0220091. https://doi.org/10.1371/journal.pone.0220091
  114. Zong H., Zhang Y., Liu X., Xu Z., Ye J., Lu S., Guo X., Yang Z., Zhang X., Chai M., Fan M., Liao Y., Yang W., Wu Y., Zhang D. Recent trends in smartphone‐based optical imaging biosensors for genetic testing: A review // View. 2023. V. 4. № 4. Article 20220062. https://doi.org/10.1002/VIW.20220062
  115. Yu T., Zhang S., Matei R., Marx W., Beisel C.L., Wei Q. Coupling smartphone and CRISPR–Cas12a for digital and multiplexed nucleic acid detection // AIChE J. 2021. V. 67. № 12. Article e17365. https://doi.org/10.1002/aic.17365
  116. Lázaro A., Maquieira A., Tortajada-Genaro L.A. Discrimination of single-nucleotide variants based on an allele-specific hybridization chain reaction and smartphone detection // ACS Sensors. 2022. V. 7. № 3. P. 758. https://doi.org/10.1021/acssensors.1c02220
  117. Yang H., Xia M., Yang W., Liu H., Ni P., Lu Y. Smartphone-assisted paper-based analytical device integrated with photo-responsive oxidase mimetic for colorimetric detection of carbosulfan // Sens. Actuators B. 2025. V. 428. Article 137231. https://doi.org/10.1016/j.snb.2025.137231
  118. Jesuraj R., Perumal P. Bimetal (Ni-Cu)metal-organic framework as an efficient peroxidase nanozyme integrated with a smartphone-assisted paper-based colorimetric sensor for carbendazim detection in food samples // J. Food Compos. Anal. 2025. V. 139. Article 107149. https://doi.org/10.1016/j.jfca.2024.107149
  119. Li Y., Wu S., Lu H., Xu S. Ratiometric fluorescent probe and smartphone-based visual recognition for H2O2 and organophosphorus pesticide based on Ce3+/Ce4+ cascade enzyme reaction // Food Chem. 2025. V. 469. Article 142577. https://doi.org/10.1016/j.foodchem.2024.142577
  120. Sahare T., Singh N., Sahoo B.N., Josh A. Smartphone-enhanced nanozyme sensors: Colorimetric and fluorescence sensing techniques // Biosens. Bioelectron.: X. 2024. V. 21. Article 100544. https://doi.org/10.1016/j.biosx.2024.100544
  121. Chen X., Lin T., Su J., Hou L., Zhao S. Boric acid functionalized Cu2–xSe nanozyme for the immunomagnetic bead-based colorimetric assay of Escherichia coli O157:H7 coupled with smartphone // Microchem. J. 2025. V. 209. Article 112713. https://doi.org/10.1016/j.microc.2025.112713
  122. Zhang Y., Yuanyuan Cui, Mengmeng Sun, Tanke Wang, Tao Liu, Xianxiang Dai, Ping Zou, Ying Zhao, Xianxiang Wang, Yanying Wang, Man Zhou, Gehong Su, Chun Wu, Huadong Yin, Hanbing Rao, Zhiwei Lu. Deep learning-assisted smartphone-based molecularly imprinted electrochemiluminescence detection sensing platform: Protable device and visual monitoring furosemide // Biosens. Bioelectron. 2022. V. 209. Article 114262. https://doi.org/10.1016/j.bios.2022.114262
  123. Zhan P., Peil A., Jiang Q., Wang D., Mousavi S., Xiong Q., Shen Q., Shang Y., Ding B., Lin C., Ke Y., Liu N. Recent advances in DNA origami-engineered nanomaterials and applications // Chem. Rev. 2023. V. 123. № 7. P. 3976. https://doi.org/10.1021/acs.chemrev.3c00028
  124. Domljanovic I., Loretan M., Kempter S., Acuna G.P., Kocabey S., Ruegg C. DNA origami book biosensor for multiplex detection of cancer-associated nucleic acids // Nanoscale. 2022. V. 14(41). P. 15432. https://doi.org/10.1039/d2nr03985k
  125. Mahato K., Wang J. Electrochemical sensors: From the bench to the skin // Sens. Actuators B. 2021. V. 344. Article 130178. https://doi.org/10.1016/j.snb.2021.130178
  126. Zheng L., Cao M., Du Y., Liu Q., Emran M.Y., Kotb A., Sun M., Ma C.B., Zhou M. Artificial enzyme innovations in electrochemical devices: Advancing wearable and portable sensing technologies // Nanoscale. 2024. V. 16(1). P. 44. https://doi.org/10.1039/D3NR05728C
  127. Basarir F., Haj Y.A., Zou F., De S., Nguyen A., Frey A., Haider I., Sariola V., Vapaavuori J. Edible and biodegradable wearable capacitive pressure sensors: A paradigm shift toward sustainable electronics with bio‐based materials // Adv. Funct. Mater. 2024. V. 34(39). Article 2403268. https://doi.org/10.1002/adfm.202403268
  128. Perera G.S., Rahman M.A., Blazevski A., Wood A., Walia S., Bhaskaran M., Sriram S. rapid conductometric detection of SARS-CoV-2 proteins and its variants using molecularly imprinted polymer nanoparticles // Adv. Mater. Technol. 2023. V. 8(3). Article 202200965. https://doi.org/10.1002/admt.202200965
  129. Li Z., Xu D., Zhang D., Yamaguchi Y. A portable instrument for on-site detection of heavy metal ions in water // Anal. Bioanal. Chem. 2021. V. 413. P. 3471. https://doi.org/10.1007/s00216-021-03292-w
  130. Park H., Park Y., Lakshminarayana S., Jung H.-M., Kim M.-Y., Lee K.H., Jung S. Portable all-in-one electroanalytical device for point of care // IEEE Access. 2022. V. 10. P. 68700. https://doi.org/10.1109/ACCESS.2022.3186678
  131. Lin Q., Zhichao Yu, Liling Lu, Xue Huang, Qiaohua Wei, Dianping Tang. Smartphone-based photoelectrochemical immunoassay of prostate-specific antigen based on Co-doped Bi2O2S nanosheets // Biosens. Bioelectron. 2023. V. 230. Article 115260. https://doi.org/10.1016/j.bios.2023.115260
  132. Huang Q., Chen J., Zhao Y., Huang J., Liu H. Advancements in electrochemical glucose sensors // Talanta. 2025. V. 281. Article 126897. https://doi.org/10.1016/j.talanta.2024.126897
  133. Xu J., Yan Z., Liu Q. Smartphone-based electrochemical systems for glucose monitoring in biofluids: A review // Sensors. 2022. V. 22. Article 5670. https://doi.org/10.3390/s22155670
  134. Manikandan R., Rajarathinam T., Jayaraman S., Jang H.G., Yoon J.H., Lee J., Paik H.J., Chang S.C. Recent advances in miniaturized electrochemical analyzers for hazardous heavy metal sensing in environmental samples // Coord. Chem. Rev. 2024. V. 499. Article 215487. https://doi.org/10.1016/j.ccr.2023.215487
  135. Biyani M., Biyani R., Tsuchihashi T., Takamura Y., Ushijima H., Tamiya E., Biyani M. DEP-On-Go for simultaneous sensing of multiple heavy metals pollutants in environmental samples // Sensors. 2017. V. 17. Article 45. https://doi.org/10.3390/s17010045
  136. Sun Y., Xu H., Zhou D., Xia C., Liu W., Cui A., Wang Z., Zheng W., Shan G., Huang J., Wang X. A portable integrated electrochemical sensing system for on-site nitrite detection in food // Small. 2024. V. 20(22). Article e2309357. https://doi.org/10.1002/smll.202309357
  137. Madani S. and Hatamie A. Portable mini-electrochemical cell: Integrating microsampling and micro-electroanalysis for multipurpose on-site nitrite sensing // Langmuir. 2024. V. 40(48). P. 25580. https://doi.org/10.1021/acs.langmuir.4c03398
  138. Jiang W., Zhuo Z., Zhang X., Luo H., He L., Yang Y., Wen Y., Huang Z., Wang P. Smartphone-based electrochemical sensor for cost-effective, rapid and on site detection of chlorogenic acid in herbs using biomass-derived hierarchically porous carbon synthesized by a soft-hard dual template method // Food Chem. 2024. V. 431. Article 137165. https://doi.org/10.1016/j.foodchem.2023.137165
  139. Xia H.Q., Zhu C., Qiu D., Zeng J. A smartphone-based electrochemical sensing platform for the portable and simultaneous determination of flavonoids in Citri Reticulatae Pericarpium // Anal. Chim. Acta. 2024. V. 1319. Article 342981. https://doi.org/10.1016/j.aca.2024.342981
  140. Zhang Y., Zhang C., Reis N.M., Chen W., Liang B., Liu Z. A portable microfluidic electrochemical sensor with nonlinear fit strategy for wide-range uric acid detection // Microchem. J. 2024. V. 203. Article 110908. https://doi.org/10.1016/j.microc.2024.110908
  141. Barman S.C., Ali M., Hasan E.A., Wehbe N., Alshareef H.N., Alsulaiman D. Smartphone-interfaced electrochemical biosensor for microRNA detection based on laser-induced graphene with π–π stacked peptide nucleic acid probes // ACS Mater. Lett. 2024. V. 6(3). P. 837. https://doi.org/10.1021/acsmaterialslett.3c01225
  142. Yang B., Zeng X., Ge Y., Liu W., Hao W., Long C., Wang L., Wu Q., Wen Y., Zhang J. A new method for rapid, portable, low-cost detection of Clostridium perfringens β2 toxin in animal fecal using smartphone-based electrochemical immunosensor // Microchem. J. 2024. V. 198. Article 110138. https://doi.org/10.1016/j.microc.2024.110138
  143. Alam A.U., Clyne D., Jin H., Hu N.-X., Deen M.J. Fully integrated, simple, and low-cost electrochemical sensor array for in situ water quality monitoring // ACS Sensors. 2020. V. 5(2). P. 412. https://doi.org/10.1021/acssensors.9b02095
  144. Jiang Y., Sima Y., Liu L., Zhou C., Shi S., Wan K., Chen A., Tang N., He Q., Liu J. Research progress on portable electrochemical sensors for detection of mycotoxins in food and environmental samples // Chem. Eng. J. 2024. V. 485. Article 149860. https://doi.org/10.1016/j.cej.2024.149860
  145. Dai Z. Recent advances in the development of portable electrochemical sensors for controlled substances // Sensors. 2023. V. 23. Article 3140. https://doi.org/10.3390/s23063140
  146. Зубик А.Н., Рудницкая Г.Е., Евстрапов А.А., Лукашенко Т.А. Устройства point-of-care (POC): классификация и основные требования // Научное приборостроение. 2022. № 3. URL: https://cyberleninka.ru/article/n/ustroyst-va-point-of-care-poc-klassifikatsiya-i-os-novnye-trebovaniya (дата обращения 17.01.2025).
  147. Yang K., Peretz-Soroka H., Liu Y., Lin F. Novel developments in mobile sensing based on the integration of microfluidic devices and smartphones // Lab Chip. 2016. V. 16(6). P. 943. https://doi.org/10.1039/c5lc01524c
  148. Buttkewitz M.A., Heuer C., Bahnemann J. Sensor integration into microfluidic systems: trends and challenges // Curr. Opin. Biotechnol. 2023. V. 83. Article 102978. https://doi.org/10.1016/j.copbio.2023.102978
  149. Khalaf E.M., Jabbar H.S., Romero-Parra R.M., Al-Awsi G.R.L., Budi H.S., Altamimi A.S., Gatea M.A., Falih K.T., Singh K., Alkhuzai K.A. Smartphone-assisted microfluidic sensor as an intelligent device for on-site determination of food contaminants: Developments and applications // Microchem. J. 2023. V. 190. Article 108692. https://doi.org/10.1016/j.microc.2023.108692
  150. Tsagkaris A.S., Nelis J.L.D., Campbell K., Elliott C.T., Pulkrabova J., Hajslova J. Ch. 8 – Smartphone and microfluidic systems in medical and food analysis / Microfluidic Biosensors / Eds. Mak W.C., Ho A.H.P. Academic Press, 2023. P. 233. https://doi.org/10.1016/B978-0-12-823846-2.00002-X
  151. Hu J., Cui X., Gong Y., Xu X., Gao B., Wen T., Lu T.J., Xu F. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care // Biotechnol. Adv. 2016. V. 34(3). P. 305. https://doi.org/10.1016/j.biotechadv.2016.02.008
  152. Xu D., Huang X., Guo J., Ma X. Automatic smartphone-based microfluidic biosensor system at the point of care // Biosens. Bioelectron. 2018. V. 110. P. 78. https://doi.org/10.1016/j.bios.2018.03.018
  153. Xing G., Ai J., Wang N., Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing // Trends Anal. Chem. 2022. V. 157. Article 116792. https://doi.org/10.1016/j.trac.2022.116792
  154. Yang S.M., Lv S., Zhang W., Cui Y. Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges // Sensors. 2022. V. 22(4). Article 1620. https://doi.org/10.3390/s22041620
  155. Chen A., Wang R., Bever C.R., Xing S., Hammock B.D., Pan T. Smartphone-interfaced lab-ona-chip devices for field-deployable enzyme-linked immunosorbent assay // Biomicrofluidics. 2014. V. 8(6). Article 064101. https://doi.org/10.1063/1.4901348
  156. Iakovlev A.P., Erofeev A.S., Gorelkin P.V. Novel pumping methods for microfluidic devices: A comprehensive review // Biosensors. 2022. V. 12. Article 956. https://doi.org/10.3390/bios12110956
  157. Hassan S.U., Tariq A., Noreen Z., Donia A., Zaidi S.Z.J., Bokhari H., Zhang X. Capillary-driven flow microfluidics combined with smartphone detection: An emerging tool for point-of-care diagnostics // Diagnostics (Basel). 2020. V. 10(8). Article 509. https://doi.org/10.3390/diagnostics10080509
  158. Cao Q., Chen X. Microfluidics detection technologies and applications / Advances in Analytical and Coordination Chemistry – Applications and Innovations / Eds. Oliveira M., Holló B.B., Zafar M., De Aguiar Andrade E.H., Radanovic M.M. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1008741
  159. Nisarga R., Pandit P., Sangshetti J., Arote R.B. Ch. 11 – Microfluidics in bioanalytical chemistry / Microfluidics-Aided Technologies / Eds.: Bodas D., Gajbhiye V. Academic Press, 2025. P. 237. https://doi.org/10.1016/B978-0-323-95533-1.00001-1
  160. Xiong X., Guo C., Yan G., Han B., Wu Z., Chen Y., Xu S., Shao P., Song H., Xu X., Han J. Simultaneous cross-type detection of water quality indexes via a smartphone-app integrated microfluidic paper-based platform // ACS Omega. 2022. V. 7(48). P. 44338–44345. https://doi.org/10.1021/acsomega.2c05938
  161. Duan S., Cai T., Chen L., Wang X., Zhang S., Han B., Lim E.G., Hoettges K., Hu Y., Song P. An integrated paper-based microfluidic platform for screening of early-stage Alzheimer’s disease by detecting Aβ42 // Lab Chip. 2025. V. 25. P. 512. https://doi.org/10.1039/d4lc00748d
  162. Guo W., Tao Y., Mao K., Liu W., Xue R., Ge Z., Ren Y. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments // Lab on a Chip. 2023. V. 23(1). P. 157. https://doi.org/10.1039/D2LC01053D
  163. Yuan H., Miao Z., Wan C., Wang J., Liu J., Li Y., Liu B.F. Recent advances in centrifugal microfluidics for point-of-care testing // Lab on a Chip. 2025. V. 25. P. 1015. https://doi.org/10.1039/D4LC00779D
  164. Strohmaier-Nguyen D., Carina Horn C., Baeumner A.J. Innovations in one-step point-of-care testing within microfluidics and lateral flow assays for shaping the future of healthcare // Biosens. Bioelectron. 2025. V. 267. Article 116795. https://doi.org/10.1016/j.bios.2024.116795
  165. Akarapipad P., Kaarj K., Breshears L.E., Sosnowski K., Baker J., Nguyen B.T., Eades C., Uhrlaub J.L., Quirk G., Nikolich-Žugich J., Worobey M., Yoon J.Y. Smartphone-based sensitive detection of SARSCoV-2 from saline gargle samples via flow profile analysis on a paper microfluidic chip // Biosens. Bioelectron. 2022. V. 207. Article 114192. https://doi.org/10.1016/j.bios.2022.114192
  166. The first at-home hormone tracking minilab. https://inne.io/pages/minilab (дата обращения 14.04.2025).
  167. Ballard Z.S., Joung H.A., Goncharov A., Liang J., Nugroho K., Di Carlo D., Garner O.B., Ozcan A. Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors // NPJ Digit. Med. 2020. V. 3. P. 66. https://doi.org/10.1038/s41746-020-0274-y
  168. Barbosa A.I., Gehlot P., Sidapra K., Edwards A.D., Reis N.M. Portable smartphone quantitation of prostate specificantigen (PSA) in a fluoropolymer microfluidic device // Biosens. Bioelectron. 2015. V. 70. P. 5. https://doi.org/10.1016/j.bios.2015.03.006
  169. Joh D.Y., Heggestad J.T., Zhang S. Anderson G.R., Bhattacharyya J., Wardell S.E., Wall S.A., Cheng A.B., Albarghouthi F., Liu J., Oshima S., Hucknall A.M., Hyslop T., Hall A.H.S., Wood K.C., Shelley Hwang E., Strickland K.C., Wei Q., Chilkoti A. Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates // NPJ Breast Cancer. 2021. V. 7. Article 85. https://doi.org/10.1038/s41523-021-00290-0
  170. Hu F., Li J., Zhang Z., Li M., Zhao, S., Li Z. Peng N. Smartphone-based droplet digital LAMP device with rapid nucleic acid isolation forhighly sensitive point-ofcare detection // Anal. Chem. 2020. V. 92. P. 2258. https://doi.org/10.1021/acs.analchem.9b04967
  171. Wu T., Shen C., Zhao Z., Lyu M., Bai H., Hu X., Zhao J., Zhang R., Qian K., Xu G., Ying B. Integrating paper-based microfluidics and lateral flow strip into nucleic acid amplification device toward rapid, lowcost, and visual diagnosis of multiple mycobacteria // Small Methods. 2024. V. 8(12). Article e2400095. https://doi.org/10.1002/smtd.202400095
  172. Kaarj K., Akarapipad P., Yoon J.Y. Simpler, faster, and sensitive Zika virus assay using smartphone detection of loop-mediated isothermal amplification on paper microfluidic chips // Sci. Rep. 2018. V. 8. Article 12438. https://doi.org/10.1038/s41598-018-30797-9
  173. Draz M.S., Kochehbyoki K.M., Vasan A., Battalapalli D., Sreeram A., Kanakasabapathy M.K., Kallakuri S., Tsibris A., Kuritzkes D.R., Shafiee H. DNA engineered micromotors powered by metal nanoparticles for motion based cellphone diagnostics // Nat. Commun. 2018. V. 9. Article 4282. https://doi.org/10.1038/s41467-018-06727-8
  174. Thio S.K., Park S.Y. A review of optoelectrowetting (OEW): From fundamentals to lab-on-a-smartphone (LOS) applications to environmental sensors // Lab Chip. 2022. V. 22(21). P. 3987. https://doi.org/10.1039/D2LC00372D
  175. Jiang D., Lee S., Bae S.W., Park S.-Y. Smartphone integrated optoelectrowetting (SiOEW) for on-chip sample processing and microscopic detection of water quality // Lab Chip. 2018. V. 18(3). P. 532. https://doi.org/10.1039/c7lc01095h
  176. Thio S.K., Bae S.W., Park S.Y. Lab on a smartphone (LOS): A smartphone-integrated, plasmonic-enhanced optoelectrowetting (OEW) platform for onchip water quality monitoring through LAMP assays // Sens. Actuators B. 2022. V. 358. Article 131543. https://doi.org/10.1016/j.snb.2022.131543
  177. Liu C.C., Ko C.H., Fu L.M., Jhou Y.L. Light-shading reaction microfluidic PMMA/paper detection system for detection of cyclamate concentration in foods // Food Chem. 2023. V. 400. Article 134063. https://doi.org/10.1016/j.foodchem.2022.134063
  178. Liu C.C., Wang Y.N., Fu L.M., Chen K.L. Microfluidic paper-based chip platform for benzoic acid detection in food // Food Chem. 2018. V. 249. P. 162. https://doi.org/10.1016/j.foodchem.2018.01.004
  179. Rezaei N., Daneshvar S.S., Nasihatkon B., Seidi S., Rezazadeh M. The application of barcode readable assay and linear regression RGB analysis using a customized smartphone app in on-chip electromembrane extraction for simultaneous determination of heavy metal ions // Microchem. J. 2024. V. 197. Article 109702. https://doi.org/10.1016/j.microc.2023.109702
  180. Phadungcharoen N., Pengwanput N., Nakapan A., Sutitaphan U., Thanomklom P., Jongudomsombut N., Chinsriwongkul A., Rojanarata T. Ion pair extraction coupled with digital image colorimetry as a rapid and green platform for pharmaceutical analysis: An example of chlorpromazine hydrochloride tablet assay // Talanta. 2020. V. 219. Article 121271. https://doi.org/10.1016/j.talanta.2020.121271
  181. Peng B., Zhou J., Xu J., Fan M., Ma Y., Zhou M., Li T., Zhao S. A smartphone-based colorimetry after dispersive liquid–liquid microextraction for rapid quantification of calcium in water and food samples // Microchem. J. 2019. V. 149. Article 104072. https://doi.org/10.1016/j.microc.2019.104072
  182. Lima M.J.A, Carina F. Nascimento C.F., Rocha F.R.P. Feasible photometric measurements in liquid–liquid extraction by exploiting smartphone-based digital images // Anal. Methods. 2017. V. 9. P. 2220. https://doi.org/10.1039/C7AY00388A
  183. Tang S., Qi T., Xia D., Xu M., Xu M., Zhu A., Shen W., Lee H.K. Smartphone nano-colorimetric determination of hydrogen sulfide in biosamples after silver-gold core-shell nanoprism-based headspace single-drop microextraction // Anal. Chem. 2019. V. 91. P. 5888. https://doi.org/10.1021/acs.analchem.9b00255
  184. Ullah N., Tuzen M. A new trend and future perspectives of the miniaturization of conventional extraction methods for elemental analysis in different real samples: A review. // Crit. Rev. Anal. Chem. 2024. V. 54(6). P. 1729. https://doi.org/10.1080/10408347.2022.2128635
  185. Amelin V.G., Shogah Z.A., Bolshakov D.S. Sorption-fluorimetric determination of quinolones in waste and natural waters with a smartphone // Moscow Univ Chem. Bull. 2021. V. 76. P. 262. https://doi.org/10.3103/S0027131421040027
  186. Xue C., Zhang Y., Liu B., Gao S., Yang H., Li P., Hoa N.D., Xu Y., Zhang Z., Niu J., Liao X., Cui D., Jin H. Smartphone case-based gas sensing platform for on-site acetone tracking // ACS Sens. 2022. V. 7(5). P. 1581. https://doi.org/10.1021/acssensors.2c00603
  187. Doğan V., Evliya M., Kahyaoglu L.N., Kılıç V. Onsite colorimetric food spoilage monitoring with smartphone embedded machine learning // Talanta. 2024. V. 266. Article 125021. https://doi.org/10.1016/j.talanta.2023.125021
  188. Majhi S.M. Mirzaei A., Kim H.W., Kim S.S., Kim T.W. Recent advances in energy-saving chemiresistive gas sensors: A review // Nano Energy. 2021. V. 79. Article 105369. https://doi.org/10.1016/j.nanoen.2020.105369
  189. Zong B., Wu S., Yang Y., Li Q., Tao T., Mao S. Smart gas sensors: Recent developments and future prospective // Nano-Micro Lett. 2025. V. 17(1). P. 54. https://doi.org/10.1007/s40820-024-01543-w
  190. Baram G.I. Portable liquid chromatograph for mobile laboratories I. Aims // J. Chromatogr. A. 1996. V. 728(1–2). P. 387. https://doi.org/10.1016/0021-9673(95)01271-0
  191. Sharma S., Tolley L.T., Tolley H.D., Plistil A., Stearns S.D., Lee M.L. Hand-portable liquid chromatographic instrumentation // J. Chromatogr. A. 2015. V. 1421. P. 38. https://doi.org/10.1016/j.chroma.2015.07.119
  192. Rahimi F., Chatzimichail S., Saifuddin A., Surman A.J., Taylor-Robinson S.D., Salehi-Reyhani A. A review of portable high-performance liquid chromatography: The future of the field? // Chromatographia. 2020. V. 83. P. 1165. https://doi.org/10.1007/s10337-020-03944-6
  193. Delivering accuracy and precision in fresh and fully saline waters. https://aquamonitrix. com/wp-content/uploads/2024/04/NOx-Monitrix-Tech-specs-updated-Apr-2024.pdf (дата обращения 14.04.2025).
  194. Chen Y., Qiu J., Xu K., Zhu H., Zhang S., Lu X., Li X. Development of a portable gas chromatograph–mass spectrometer embedded with a low-temperature adsorption thermal desorption module for enhanced detection of volatile organic compounds // Analyst. 2025. V. 150. P. 470. https://doi.org/10.1039/D4AN01484G
  195. Платонов И.А., Платонов В.И. Горюнов М.Г. Газовый хроматограф на основе планарных систем // Журн. аналит. химии. 2015. Т. 70. № 9. С. 1003. https://doi.org/10.1134/S000370151509001X

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».