Monitor Calibrator as an Alternative to Spectrofluorimeter: Determination of Quinine in Beverages and Medicinal Preparations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A possibility of using a monitor calibrator for the determination of luminescent compounds is shown on an example of quinine. The determination is based on the irradiation of a sample with broadband radiation in the visible and near UV spectral regions from a built-in source exciting phosphor molecules and the simultaneous registration of the radiation incident on the detector. Measurement conditions are selected. Quinine can be determined in the range of 60−750 µM, the limit of detection is 20 µM. The determination is not affected by common inorganic ions, as well as sweeteners and acidity regulators present in many beverages. The developed method of determination is applicable to the analysis of carbonated drinks and drugs. Compared to a traditional spectrofluorimeter, monitor calibrator is characterized by compactness, mobility, ability of detecting luminescence in cuvettes of various sizes and shapes, and lower cost.

About the authors

M. V. Gorbunova

Department of Chemistry, Lomonosov Moscow State University

Email: masha13_1992@mail.ru
119991, Moscow, Russia

T. A. Terentev

Department of Chemistry, Lomonosov Moscow State University

Email: masha13_1992@mail.ru
119991, Moscow, Russia

V. V. Apyari

Department of Chemistry, Lomonosov Moscow State University

Email: masha13_1992@mail.ru
119991, Moscow, Russia

S. G. Dmitrienko

Department of Chemistry, Lomonosov Moscow State University

Email: masha13_1992@mail.ru
119991, Moscow, Russia

Yu. A. Zolotov

Department of Chemistry, Lomonosov Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: masha13_1992@mail.ru
119991, Moscow, Russia; 119991, Moscow, Russia

References

  1. Апяри В.В., Горбунова М.В., Исаченко А.И., Дмитриенко С.Г., Золотов Ю.А. Использование бытовых цветорегистрирующих устройств в количественном химическом анализе // Журн. аналит. химии. 2017. Т. 72. № 11. С. 963. https://doi.org/10.7868/S0044450217110019
  2. Моногарова О.В., Осколок К.В., Апяри В.В. Цветометрия в химическом анализе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 857. https://doi.org/10.1134/S0044450218110063
  3. Lau K.T., Edwards S., Diamond D. Solid-state ammonia sensor based on Berthelot’s reaction // Sens. Actuators B: Chem. 2004. V. 98. № 1. P. 12. https://doi.org/10.1016/j.snb.2003.08.004
  4. Lapresta-Fernández A., Capitán-Vallvey L.F. Environmental monitoring using a conventional photographic digital camera for multianalyte disposable optical sensors // Anal. Chim. Acta. 2011. V. 706. № 2. P. 328. https://doi.org/10.1016/j.aca.2011.08.042
  5. Doeven E.H., Barbante G.J., Kerr E., Hogan C.F., Endler J.A., Francis P.S. Red–green–blue electrogenerated chemiluminescence utilizing a digital camera as detector // Anal. Chem. 2014. V. 86. № 5. P. 2727. https://doi.org/10.1021/ac404135f
  6. Jayawardane B.M., McKelvie I.D., Kolev S.D. A paper-based device for measurement of reactive phosphate in water // Talanta. 2012. V. 100. P. 454. https://doi.org/10.1016/j.talanta.2012.08.021
  7. Cantrell K., Erenas M.M., de Orbe-Payá I., Capitán-Vallvey L.F. Use of the hue parameter of the hue, saturation, value color space as a quantitative analytical parameter for bitonal optical sensors // Anal. Chem. 2010. V. 82. № 2. P. 531. https://doi.org/10.1021/ac901753c
  8. Gárcia A., Erenas M.M., Marinetto E.D., Abad C.A., de Orbe-Payá I., Palma A.J., Capitán-Vallvey L.F. Mobile phone platform as portable chemical analyzer // Sens. Actuators B. 2011. V. 156. № 1. P. 350. https://doi.org/10.1016/j.snb.2011.04.045
  9. Shahvar A., Saraji M., Shamsaei D. Smartphone-based chemiluminescence sensing for TLC imaging // Sens. Actuators B: Chem. 2018. V. 255. P. 891. https://doi.org/10.1016/j.snb.2017.08.144
  10. Apyari V.V., Dmitrienko S.G., Zolotov Y.A. Unusual application of common digital devices: Potentialities of Eye-One Pro mini-spectrophotometer – A monitor calibrator for registration of surface plasmon resonance bands of silver and gold nanoparticles in solid matrices // Sens. Actuators B: Chem. 2013. V. 188. P. 1109. https://doi.org/10.1016/j.snb.2013.07.097
  11. Gorbunova M.V., Apyari V.V., Zolotov I.I., Dmitrienko S.G., Garshev A.V., Volkov P.A., Bochenkov V.E. A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines // Gold Bull. 2019. V. 52. P. 115. https://doi.org/10.1007/s13404-019-00267-9
  12. Зрелова Л.В., Беляева Е.И., Марченко Д.Ю., Иванова Е.А., Санджиева Д.А., Дедов А.Г. Новый эк-спресс-метод определения гидразида изоникотиновой кислоты в водных растворах с применением отражательной спектрофотометрии и цветометрии // Журн. аналит. химии. 2018. Т. 73. № 3. С. 198. https://doi.org/10.7868/S0044450218030040
  13. Marchenko D.Y., Petrov S.I., Sandzhieva D.A., Dedov A.G. Express method of the quantitative determination of nitrites by computer colorimetry using new reagent compositions // Theor. Found. Chem. Eng. 2016. V. 50. P. 648. https://doi.org/10.1134/S0040579516040187
  14. Gorbunova M.V., Evstigneeva P.Yu., Apyari V.V., Dmitrienko S.G. A monitor calibrator as a portable tool for determination of luminescent compounds // IEEE Trans. Instrum. Meas. 2021. V. 70. Article 6002910. https://doi.org/10.1109/TIM.2020.3041390

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (310KB)
3.

Download (94KB)
4.

Download (107KB)
5.

Download (84KB)
6.

Download (70KB)
7.

Download (847KB)

Copyright (c) 2023 М.В. Горбунова, Т.А. Терентьев, В.В. Апяри, С.Г. Дмитриенко, Ю.А. Золотов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies