Analytical Capabilities of the Determination of Carbohydrates by Chromatographic and Electrophoretic Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review discusses the advantages and limitations of chromatographic and electrophoretic approaches to the determination of neutral carbohydrates in various samples with complex matrices, the possibility of implementing a variety of liquid chromatography and capillary electrophoresis modes (in zone and micellar versions), and their combinations with various derivatization, detection, and sample preparation techniques. Conditions for the indirect detection of sugars upon the introduction of various absorbing additives into a mobile phase or supporting electrolyte, ligand-exchange capillary electrophoresis, and intracapillary complexation and the determination of carbohydrates by anion-exchange and hydrophilic chromatography are discussed.

About the authors

L. A. Kartsova

St. Petersburg State University

Email: malushevskaa@gmail.com
198504, St. Petersburg, Russia

A. V. Maliushevska

St. Petersburg State University

Email: malushevskaa@gmail.com
198504, St. Petersburg, Russia

E. A. Kolobova

St. Petersburg State University; Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia

Author for correspondence.
Email: malushevskaa@gmail.com
198504, St. Petersburg, Russia; 194044, St. Petersburg, Russia

References

  1. Wiecinska P., Zurawska A., Falkowski P., Jeong D.Y., Szafran M. Sweet ceramics: How saccharide-based compounds have changed colloidal processing of ceramic materials // J. Korean Ceram. Soc. 2020. V. 57. № 3. P. 231. https://doi.org/10.1007/S43207-020-00036-X
  2. Gerwig G.J. The Art of Carbohydrate Analysis. Groningen: Springer, 2021. https://doi.org/10.1007/978-3-030-77791-3
  3. Varki A. Biological roles of oligosaccharides: All of the theories are correct // Glycobiology. 1993. V. 3. № 2. P. 97. https://doi.org/10.1093/GLYCOB/3.2.97
  4. Varki A. Biological roles of glycans // Glycobiology. 2017. V. 27. № 1. P. 3. https://doi.org/10.1093/GLYCOB/CWW086
  5. Gandhi N.S., Mancera R.L. The Structure of glycosaminoglycans and their interactions with proteins // Chem. Biol. Drug Des. 2008. V. 72. № 6. P. 455. https://doi.org/10.1111/J.1747-0285.2008.00741.X
  6. Cortés-Sánchez A., Hernández-Sánchez H., Jaramillo-Flores M.E. Biological activity of glycolipids produced by microorganisms: New trends and possible therapeutic alternatives // Microbiol. Res. 2013. V. 168. № 1. P. 22. https://doi.org/10.1016/j.micres.2012.07.002
  7. Niaz K., Khan F., Shah M.A. Analysis of carbohydrates (monosaccharides, polysaccharides) / Recent Advances in Natural Products Analysis / Eds. Nabavi S.M., Saeedi M., Nabavi S.F., Silva A.S. Amsterdam: Elsevier, 2020. P. 621. https://doi.org/10.1016/B978-0-12-816455-6.00018-4
  8. Geijtenbeek T., Torensma R., van Vliet S., van Duijnhoven G., Adema G., Kooyk Y., Figdor C. Identification of DC-SIGN, a novel dendritic cell–specific ICAM-3 receptor that supports primary immune responses // Cell. 2000. V. 100. P. 575. https://doi.org/10.1016/S0092-8674(00)80693-5
  9. Kapaev R., Egorova K., Toukach P. Carbohydrate structure generalization scheme for database-driven simulation of experimental observables, such as NMR chemical shifts // J. Chem. Inf. Model. 2014. V. 54. № 9. P. 2594. https://doi.org/10.1021/ci500267u
  10. Varki A., Freeze H.H., Manzi A.E. Preparation and analysis of glycoconjugates / Current Protocols in Molecular Biology. Hoboken: John Wiley & Sons, Inc, 2009. P. 1. https://doi.org/10.1002/0471142727.mb1700s88
  11. Карцова Л.А., Бессонова Е.А., Сомова В.Д. Гидрофильная хроматография // Журн. аналит. химии. 2019. Т. 74. № 5. P. 323. (Kartsova L.A., Bessonova E.A., and Somova V. D. Hydrophilic interaction chromatography // J. Anal. Chem. 2019. V. 74. № 5. P. 415. https://doi.org/10.1134/S106193481905005810.1134/S1061934819050058https://doi.org/10.1134/S0044450219050050
  12. Nagy G., Peng T., Pohl N.L.B. Recent liquid chromatographic approaches and developments for the separation and purification of carbohydrates // Anal. Methods UK. 2017. V. 9. № 24. P. 3579. https://doi.org/10.1039/c7ay01094j
  13. Ikegami T., Horie K., Saad N., Hosoya K., Fiehn O., Tanaka N. Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC // Anal. Bioanal. Chem. 2008. V. 391. № 7. P. 2533. https://doi.org/10.1007/s00216-008-2060-6
  14. Tang K., Liang L., Cai Y., Mou S. Determination of sugars and alditols in tobacco with high-performance anion-exchange chromatography // J. Sep. Sci. 2007. V. 30. P. 2160. https://doi.org/10.1002/jssc.200700044
  15. Захарова А.М., Гринштейн И.Л., Карцова Л.А. Определение углеводов и подсластителей в пищевых продуктах и биологически активных добавках методом высокоэффективной жидкостной хроматографии // Журн. аналит. химии. 2013. V. 68. № 12. P. 1208. (Zakharova A.M., Grinshtein I.L., and Kartsova L.A. Determination of sugars using ligand-exchange capillary electrophoresis // J. Anal. Chem. 2010. V. 68. № 12. P. 1081. https://doi.org/10.1134/S106193481310012210.1134/S1061934813100122)https://doi.org/10.7868/s0044450213100149
  16. Fu Q., Liang T., Zhang X., Du Y., Guo Z., Liang X. Carbohydrate separation by hydrophilic interaction liquid chromatography on a “click” maltose column // Carbohydr. Res. 2010. V. 345. № 18. P. 2690. https://doi.org/10.1016/j.carres.2010.09.033
  17. Fu Q., Liang T., Li Z., Xu X., Ke Y., Jin Y., Liang X. Separation of carbohydrates using hydrophilic interaction liquid chromatography // Carbohydr. Res. 2013. V. 379. P. 13. https://doi.org/10.1016/J.CARRES.2013.06.006
  18. Liu J., Li J., Yi D., Liu Y., Liu R., Xue Y., Huang Q., Liu S., Jiang Y. Non-derivatization strategy for the comprehensive characterization of neutral monosaccharide isomers and neutral disaccharide isomers using hydrophilic interaction liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2021. V. 1185. https://doi.org/10.1016/j.jchromb.2021.122972
  19. Antonio C., Larson T., Gilday A., Graham I., Bergström E., Thomas-Oates J. Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue // Rapid Commun. Mass Spectrom. 2008. V. 22. № 9. P. 1399. https://doi.org/10.1002/rcm.3519
  20. Pismennõi D., Kiritsenko V., Marhivka J., Küt M.L., Vilu R. Development and optimisation of HILIC-LC-MS method for determination of carbohydrates in fermentation samples // Molecules. 2021. V. 26. № 12. P. 3669. https://doi.org/10.3390/molecules26123669
  21. Gervasoni J., Primiano A., Graziani C., Scaldaferri F., Gasbarrini A., Urbani A., Persichilli S. Validation of UPLC-MS/MS Method for determination of urinary lactulose/mannitol // Molecules. 2018. V. 23. № 10. P. 2705. https://doi.org/10.3390/molecules23102705
  22. Grootjans J. Non-invasive assessment of barrier integrity and function of the human gut // World J. Gastrointest. Surg. 2010. V. 2. № 3. P. 61. https://doi.org/10.4240/wjgs.v2.i3.61
  23. Vismeh R., Humpula J.F., Chundawat S.P.S., Balan V., Dale B.E., Jones A.D. Profiling of soluble neutral oligosaccharides from treated biomass using solid phase extraction and LC-TOF MS // Carbohydr. Polym. 2013. V. 94. № 2. P. 791. https://doi.org/10.1016/j.carbpol.2013.02.005
  24. Ikegami T., Horie K., Saad N., Hosoya K., Fiehn O., Tanaka N. Highly efficient analysis of underivatized carbohydrates using monolithic-silica-based capillary hydrophilic interaction (HILIC) HPLC // Anal. Bioanal. Chem. 2008. V. 391. № 7. P. 2533. https://doi.org/10.1007/s00216-008-2060-6
  25. Bi W., Zhou J., Row K.H. Separation of xylose and glucose on different silica-confined ionic liquid stationary phases // Anal. Chim. Acta. 2010. V. 677. № 2. P. 162. https://doi.org/10.1016/j.aca.2010.08.004
  26. Tian M., Bi W., Row K.H. Separation of monosaccharides by solid-phase extraction with ionic liquid-modified microporous polymers // J. Sep. Sci. 2011. V. 34. № 22. P. 3151. https://doi.org/10.1002/jssc.201100546
  27. Chikurova N.Yu., Shemiakina O., Shpigun O.A., Chernobrovkina A.V. Multicomponent Ugi reaction as a tool for fast and easy preparation of stationary phases for hydrophilic interaction liquid chromatography. Part I: The influence of attachment and spacing of the functional ligand obtained via the Ugi reaction // J. Chromatogr. A. 2022. V. 1666. Article 462804. https://doi.org/10.1016/j.chroma.2022.462804
  28. Maier M., Reusch D., Bruggink C., Bulau P., Wuhrer M., Mølhøj M. Applying mini-bore HPAEC-MS/MS for the characterization and quantification of Fc N-glycans from heterogeneously glycosylated IgGs // J. Chromatogr. B. 2016. V. 1033–1034. P. 342. https://doi.org/10.1016/J.JCHROMB.2016.08.001
  29. Corradini C., Cavazza A., Bignardi C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: Principles and applications // Int. J. Carbohydr. Chem. 2012. V. 2012. P. 1. https://doi.org/10.1155/2012/487564
  30. Tommaso R., Cataldi I., Margiotta G., Iasi L., di Chio B. Determination of sugar compounds in olive plant extracts by anion-exchange chromatography with pulsed amperometric detection // Anal. Chem. 2000. V. 72. P. 3902. https://doi.org/10.1021/ac000266o
  31. Sequeira I.R., Kruger M.C., Hurst R.D., Lentle R.G. A simple, robust, and convenient HPLC assay for urinary lactulose and mannitol in the dual sugar absorption test // Molecules. 2022. V. 27. № 9. P. 2677. https://doi.org/10.3390/molecules27092677
  32. de Souza M.F., Pereira D.S., Freitas S.P., Bon E., Rodrigues M.A. Neutral sugars determination in Chlorella: Use of a one-step dilute sulfuric acid hydrolysis with reduced sample size followed by HPAEC analysis // Algal Res. 2017. V. 24. P. 130. https://doi.org/10.1016/J.ALGAL.2017.03.019
  33. Bruggink C., Maurer R., Herrmann H., Cavalli S., Hoefler F. Analysis of carbohydrates by anion exchange chromatography and mass spectrometry // J. Chromatogr. A. 2005. V. 1085. № 1. P. 104. https://doi.org/10.1016/j.chroma.2005.03.108
  34. Schmid T., Baumann B., Himmelsbach M., Klampfl C.W., Buchberger W. Analysis of saccharides in beverages by HPLC with direct UV detection // Anal. Bioanal. Chem. 2016. V. 408. № 7. P. 1871. https://doi.org/10.1007/s00216-015-9290-1
  35. Gonzalez N.M., Fitch A., Al-Bazi J. Development of a RP-HPLC method for determination of glucose in Shewanella oneidensis cultures utilizing 1-phenyl-3-methyl-5-pyrazolone derivatization // PLoS ONE. 2020. V. 15. № 3. Article e0229990. https://doi.org/10.1371/journal.pone.0229990
  36. Bai W., Fang X., Zhao W., Huang S., Zhang H., Qian M. Determination of oligosaccharides and monosaccharides in Hakka rice wine by precolumn derivation high-performance liquid chromatography // J. Food Drug Anal. 2015. V. 23. № 4. P. 645. https://doi.org/10.1016/J.JFDA.2015.04.011
  37. Rakete S., Glomb M.A. A novel approach for the quantitation of carbohydrates in mash, wort, and beer with RP-HPLC using 1-naphthylamine for precolumn derivatization // J. Agric. Food Chem. 2013. V. 61. № 16. P. 3828. https://doi.org/10.1021/JF400463R
  38. Wu W., Hamase K., Kiguchi M., Yamamoto K., Zaitsu K. Reversed-phase HPLC of monosaccharides in glycoproteins derivatized with aminopyrazine with fluorescence detection // Anal Sci. 2000. V. 16. № 9. P. 919. https://doi.org/10.2116/analsci.16.919
  39. Nakamura A., Hatanaka C., Nagamatsu Y. Ultraviolet spectrometric determination of neutral monosaccharides by HPLC with ethanolamine // Biosci. Biotechnol. Biochem. 2000. V. 64. № 1. P. 178. https://doi.org/10.1271/bbb.64.178
  40. Melmer M., Stangler T., Premstaller A., Lindner W. Comparison of hydrophilic-interaction, reversed-phase and porous graphitic carbon chromatography for glycan analysis // J. Chromatogr. A. 2011. V. 1218. № 1. P. 118. https://doi.org/10.1016/J.CHROMA.2010.10.122
  41. Templeton D.W., Quinn M., van Wychen S., Hyman D., Laurens L.M.L. Separation and quantification of microalgal carbohydrates // J. Chromatogr. A. 2012. V. 1270. P. 225. https://doi.org/10.1016/j.chroma.2012.10.034
  42. Stoll D.R., Carr P.W. Two-dimensional liquid chromatography: A state of the art tutorial // Anal. Chem. 2017. V. 89. № 1. P. 519. https://doi.org/10.1021/ACS.ANALCHEM.6B03506
  43. Chen L., Zhu W., Yan N., Guo Y., Yi L., Ouyang Y., Zhang Z. Analysis of heparinase derived LMWH products using a MHC 2D LC system linked to Q-TOF MS // J. Pharm. Biomed. Anal. 2022. V. 212. Article 114616. https://doi.org/10.1016/J.JPBA.2022.114616
  44. Chen L., Ouyang Y., Yan N., Guo Y., Yi L., Sun Y., Liu D., Zhang Z. Comprehensive analysis of heparinase derived heparin-products using two-dimensional liquid chromatography coupled with mass spectrometry // J. Chromatogr. A. 2021. V. 1643. Article 462049. https://doi.org/10.1016/J.CHROMA.2021.462049
  45. Ruiz-Matute A.I., Brokl M., Soria A.C., Sanz M.L., Martínez-Castro I. Gas chromatographic–mass spectrometric characterisation of tri- and tetrasaccharides in honey // Food Chem. 2010. V. 120. № 2. P. 637. https://doi.org/10.1016/J.FOODCHEM.2009.10.050
  46. Ruiz-Matute A.I., Hernández-Hernández O., Rodríguez-Sánchez S., Sanz M.L., Martínez-Castro I. Derivatization of carbohydrates for GC and GC-MS analyses // J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2011. V. 879. № 17–18. P. 1226. https://doi.org/10.1016/J.JCHROMB.2010.11.013
  47. Wang H., Geppert H., Fischer T., Wieprecht W., Möller D. Determination of sucrose in honey with derivatization/solid-phase microextraction and gas-chromatography/mass spectrometry // J. Chromatogr. Sci. 2015. V. 53. № 9. P. 1427. https://doi.org/10.1093/chromsci/bmv044
  48. Morvai-Vitányi M., Molnár-Perl I., Knausz D., Sass P. Simultaneous GC derivatization and quantification of acids and sugars // Chromatographia. 1993. V. 36. № 1. P. 204. https://doi.org/10.1007/BF02263864
  49. Xia Y.G., Sun H.M., Wang T.L., Liang J., Yang B.Y., Kuang H.X. A modified GC-MS analytical procedure for separation and detection of multiple classes of carbohydrates // Molecules. 2018. V. 23. № 6. P. 1284. https://doi.org/10.3390/MOLECULES23061284
  50. Silva F.O. Microwave-assisted derivatization of glucose and galactose for gas chromatographic determination in human plasma // Clin. Chem. 2006. V. 52. № 2. P. 334. https://doi.org/10.1373/CLINCHEM.2005.062109
  51. Li Z., Wang J., Huang C., Zhang S., Yang J., Jiang A., Zhou R., Pan D. Gas chromatography/time-of-flight mass spectrometry-based metabonomics of hepatocarcinoma in rats with lung metastasis: Elucidation of the metabolic characteristics of hepatocarcinoma at formation and metastasis // Rapid Commun. Mass Spectrom. 2010. V. 24. № 18. P. 2765. https://doi.org/10.1002/RCM.4703
  52. Rojas-Escudero E., Alarcón-Jiménez A.L., Elizalde-Galván P., Rojo-Callejas F. Optimization of carbohydrate silylation for gas chromatography // J. Chromatogr. A. 2004. V. 1027. P. 117. https://doi.org/10.1016/j.chroma.2003.10.131
  53. Zarate E., Boyle V., Rupprecht U., Green S., Villas-Boas S.G., Baker P., Pinu F.R. Fully automated trimethylsilyl (TMS) derivatisation protocol for metabolite profiling by GC-MS // Metabolites. 2017. V. 7. № 1. P. 1. https://doi.org/10.3390/METABO7010001
  54. Becker M., Liebner F., Rosenau T., Potthast A. Ethoximation-silylation approach for mono- and disaccharide analysis and characterization of their identification parameters by GC/MS // Talanta. 2013. V. 115. P. 642. https://doi.org/10.1016/j.talanta.2013.05.052
  55. Xia Y.G., Sun H.M., Wang T.L., Liang J., Yang B.Y., Kuang H.X. A modified GC-MS analytical procedure for separation and detection of multiple classes of carbohydrates // Mol. A J. Synth. Chem. Nat. Prod. Chem. 2018. V. 23. № 6. P. 1284. https://doi.org/10.3390/MOLECULES23061284
  56. Weber P.L., Lunte S.M. Capillary electrophoresis with pulsed amperometric detection of carbohydrates and glycopeptides // Electrophoresis. 1996. V. 17. № 2. P. 302. https://doi.org/10.1002/elps.1150170204
  57. Carvalho A., da Silva F.J.A., do Lago C.L. Determination of mono- and disaccharides by capillary electrophoresis with contactless conductivity detection // Electrophoresis. 2003. V. 24. № 12–13. P. 2138. https://doi.org/10.1002/elps.200305408
  58. Klampfl C.W., Buchberger W. Determination of carbohydrates by capillary electrophoresis with electrospray-mass spectrometric detection // Electrophoresis. 2001. V. 22. № 13. P. 2737. https://doi.org/10.1002/15222683(200108)22:13<2737::AID- ELPS2737>3.0.CO;2-Z
  59. Schmid T., Himmelsbach M., Oliver J.D., Gaborieau M., Castignolles P., Buchberger W. Investigation of photochemical reactions of saccharides during direct ultraviolet absorbance detection in capillary electrophoresis // J. Chromatogr. A. 2015. V. 1388. P. 259. https://doi.org/10.1016/J.CHROMA.2015.02.030
  60. Schmid T., Himmelsbach M., Buchberger W. Investigation of photochemical reaction products of glucose formed during direct UV detection in CE // Electrophoresis. 2016. V. 37. № 7–8. P. 947. https://doi.org/10.1002/elps.201500283
  61. Sarazin C., Delaunay N., Costanza C.V. Eudes, Mallet J.M., Gareil P. New avenue for mid-UV-range detection of underivatized carbohydrates and amino acids in capillary electrophoresis // Anal. Chem. 2011. V. 83. № 19. P. 7381. https://doi.org/10.1021/ac2012834
  62. Rovio S., Yli-Kauhaluoma J., Sirén H. Determination of neutral carbohydrates by CZE with direct UV detection // Electrophoresis. 2007. V. 28. № 17. P. 3129. https://doi.org/10.1002/elps.200600783
  63. Rovio S., Simolin H., Koljonen K., Sirén H. Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis // J. Chromatogr. A. 2008. V. 1185. № 1. P. 139. https://doi.org/10.1016/J.CHROMA.2008.01.031
  64. Alinat E., Jemmali S., Delaunay N., Archer X., Gareil P. Analysis of underivatized cellodextrin oligosaccharides by capillary electrophoresis with direct photochemically induced UV-detection // Electrophoresis. 2015. V. 36. № 14. P. 1555. https://doi.org/10.1002/elps.201400605
  65. Kaijanen L., Metsämuuronen S., Reinikainen S.P., Pietarinen S., Jernström E. Profiling of water-soluble carbohydrates in pine and spruce extracts by capillary zone electrophoresis with direct UV detection // Wood Sci. Technol. 2015. V. 49. № 4. P. 795. https://doi.org/10.1007/s00226-015-0729-5
  66. Zhao L., Chanon A.M., Chattopadhyay N., Dami I.E., Blakeslee J.J. Quantification of carbohydrates in grape tissues using capillary zone electrophoresis // Front. Plant. Sci. 2016. V. 7. P. 818. https://doi.org/10.3389/fpls.2016.00818
  67. Lagane B., Treilhou M., Couderc F. Capillary electrophoresis: Theory, teaching approach and separation of oligosaccharides using indirect UV detection // Biochem. Mol. Biol. Educ. 2000. V. 28. № 5. P. 251. https://doi.org/10.1016/S1470-8175(00)00031-X
  68. Xu X., Kok W.T., Poppe H. Sensitive determination of sugars by capillary zone electrophoresis with indirect UV detection under highly alkaline conditions // J. Chromatogr. A. 1995. V. 716. № 1–2. P. 231. https://doi.org/10.1016/0021-9673(95)00552-X
  69. Zemann A., Nguyen D.T., Bonn G. Fast separation of underivatized carbohydrates by coelectroosmotic capillary electrophoresis // Electrophoresis. 1997. V. 18. № 7. P. 1142. https://doi.org/10.1002/ELPS.1150180720
  70. Zemann A.J. Sub-minute separations of organic and inorganic anions with co-electroosmotic capillary electrophoresis // J. Chromatogr. A. 1997. V. 787. № 1–2. P. 243. https://doi.org/10.1016/S0021-9673(97)00645-6
  71. Lee Y.H., Lin T.I., Luh T.Y. Determination of carbohydrates by high-performance capillary electrophoresis with indirect absorbance detection // J. Chromatogr. B: Biomed. Sci. Appl. 1996. V. 681. № 1. P. 87. https://doi.org/10.1016/0378-4347(95)00503-X
  72. Ramírez S.C., Carretero A.S., Blanco C.C., de Castro M.H.B., Gutiérrez A.F. Indirect determination of carbohydrates in wort samples and dietetic products by capillary electrophoresis // J. Sci. Food Agric. 2005. V. 85. № 3. P. 517. https://doi.org/10.1002/JSFA.2010
  73. Warren C.R., Adams M.A. Capillary electrophoresis for the determination of major amino acids and sugars in foliage: Application to the nitrogen nutrition of sclerophyllous species // J. Exp. Bot. 2000. V. 51. № 347. P. 1147. https://doi.org/10.1093/JEXBOT/51.347.1147
  74. Stroka J., Dossi N., Anklam E. Determination of the artificial sweetener Sucralose® by capillary electrophoresis // Food Addit. Contam. 2003. V. 20. № 6. P. 524. https://doi.org/10.1080/0265203031000070803
  75. Soga T., Heiger D.N. Simultaneous determination of monosaccharides in glycoproteins by capillary electrophoresis // Anal. Biochem. 1998. V. 261. № 1. P. 73. https://doi.org/10.1006/abio.1998.2727
  76. Soga T., Serwe M. Determination of carbohydrates in food samples by capillary electrophoresis with indirect UV detection // Food Chem. 2000. V. 69. № 3. P. 339. https://doi.org/10.1016/S0308-8146(00)00044-3
  77. Soga T., Ross G.A. Simultaneous determination of inorganic anions, organic acids, amino acids and carbohydrates by capillary electrophoresis // J. Chromatogr. A. 1999. V. 837. № 1–2. P. 231. https://doi.org/10.1016/S0021-9673(99)00092-8
  78. Lu B., Westerlund D. Indirect UV detection of carbohydrates in capillary zone electrophoresis by using tryptophan as a marker // Electrophoresis. 1996. V. 17. № 2. P. 325. https://doi.org/10.1002/ELPS.1150170207
  79. Алексеева А.В., Карцова Л.А., Казачищева Н.В. Определение сахаров методом лигандообменного капиллярного электрофореза // Журн. аналит. химии. 2010. Т. 65. № 2. P. 205. (Alekseeva A.V., Kartsova L.A., Kazachishcheva N.V. Determination of sugars using ligand-exchange capillary electrophoresis // J. Anal. Chem. 2010. V. 65. № 2. P. 202.)https://doi.org/10.1134/S1061934810020176
  80. Gürel A., Hızal J., Öztekin N., Erim F.B. CE determination of carbohydrates using a dipeptide as separation electrolyte // Chromatographia. 2006. V. 64. № 5–6. P. 321. https://doi.org/10.1365/s10337-006-0032-6
  81. Vaher M., Koel M., Kazarjan J., Kaljurand M. Capillary electrophoretic analysis of neutral carbohydrates using ionic liquids as background electrolytes // Electrophoresis. 2011. V. 32. № 9. P. 1068. https://doi.org/10.1002/elps.201000575
  82. Hoffstetter-Kuhn S., Paulus A., Gassmann E., Widmer M.H. Influence of borate complexation on the electrophoretic behavior of carbohydrates in capillary electrophoresis // Anal. Chem. 1991. V. 63. № 15. P. 1541. https://doi.org/10.1021/AC00015A009/ASSET/AC00015A009.FP.PNG_V03
  83. Schmitt-Kopplin P., Fischer K., Freitag D., Kettrupgsf A. Capillary electrophoresis for the simultaneous separation of selected carboxylated carbohydrates and their related 1,4-lactones // J. Chromatogr. A. 1998. V. 807. № 1. P. 89. https://doi.org/10.1016/S0021-9673(98)00056-9
  84. Angyal S.J. Complexing of carbohydrates with copper ions: A reappraisal // Carbohydr. Res. 1990. V. 200. P. 181. https://doi.org/10.1016/0008-6215(90)84189-2
  85. Алексеева А.В., Карцова Л.А. Возможности лигандообменного капиллярного электрофореза при определении биологически активных веществ // Журн. аналит. химии. 2011. Т. 66. № 7. P. 764. (Alekseeva A.V., Kartsova L.A. Potencies of ligand-exchange capillary electrophoresis in the determination of biologically active compounds // J. Anal. Chem. 2011. V. 66. № 7. P. 651.)https://doi.org/10.1134/S1061934811070021
  86. Bazzanella A., Bachmann K. Separation and direct UV detection of sugars by capillary electrophoresis using chelation of copper(II) // J. Chromatogr. A. 1998. V. 799. № 1–2. P. 283. https://doi.org/10.1016/S0021-9673(97)01039-X
  87. Алексеева А.В., Карцова Л.А. Лигандообменный капиллярный электрофорез // Журн. аналит. химии. 2011. Т. 66. № 7. P. 677. (Kartsova L.A., Alekseeva A.V. Ligand-exchange capillary electrophoresis // J. Anal. Chem. 2011. V. 66. № 7. P. 563.)https://doi.org/10.1134/S1061934811050066
  88. Čokrtová K., Mareš V., Křížek T. On-capillary fluorescent labeling of saccharides for capillary electrophoresis // Electrophoresis. 2022. https://doi.org/10.1002/elps.202200136
  89. Wang X.Y., Chen Y., Li Z., Wang Z. Analysis of carbohydrates by capillary zone electrophoresis with on-capillary derivatization // J. Liq. Chromatogr. Relat. Technol. 2002. V. 25. № 4. P. 589. https://doi.org/10.1081/JLC-120008813
  90. Taga A., Suzuki S., Honda S. Capillary electrophoretic analysis of carbohydrates derivatized by in-capillary condensation with 1-phenyl-3-methyl-5-pyrazolone // J. Chromatogr. A. 2001. V. 911. № 2. P. 259. https://doi.org/10.1016/S0021-9673(01)00516-7
  91. Wang X.Y., Chen Y., Li Z., Wang Z. Analysis of carbohydrates by capillary zone electrophoresis with on-capillary derivatization // J. Liquid Chromatogr. Relat. Technol. 2002. V. 25. I. 4. P. 589. https://doi.org/10.1081/JLC-120008813
  92. Maeda E., Kataoka M., Hino M., Kajimoto K., Kaji N., Tokeshi M., Kido J., Shinohara Y., Baba Y. Determination of human blood glucose levels using microchip electrophoresis // Electrophoresis. 2007. V. 28. P. 2927. https://doi.org/10.1002/elps.200600795
  93. Rovio S., Yli-Kauhaluoma J., Sirén H. Determination of neutral carbohydrates by CZE with direct UV detection // Electrophoresis. 2007. V. 28. № 17. P. 3129. https://doi.org/10.1002/elps.200600783
  94. Schwaiger H., Oefner P.J., Huber C., Grill E., Bonn G.K. Capillary zone electrophoresis and micellar electrokinetic chromatography of 4-aminobenzonitrile carbohydrate derivatives // Electrophoresis. 1994. V. 15. № 7. P. 941. https://doi.org/10.1002/ELPS.11501501138
  95. Andersen K.E., Bjergegaard C., Sørensen H. Analysis of reducing carbohydrates by reductive tryptamine derivatization prior to micellar electrokinetic capillary chromatography // J. Agric. Food Chem. 2003. V. 51. № 25. P. 7234. https://doi.org/10.1021/jf030329e
  96. Jager A.V., Tonin F.G., Tavares M.F.M. Comparative evaluation of extraction procedures and method validation for determination of carbohydrates in cereals and dairy products by capillary electrophoresis // J. Sep. Sci. 2007. V. 30. P. 586. https://doi.org/10.1002/jssc.200600370
  97. Soria A.C., Brokl M., Sanz M.L., Martínez-Castro I. Sample preparation for the determination of carbohydrates in food and beverages / Comprehensive Sampling and Sample Preparation. V. 4 / Ed. Pawliszyn J. Amsterdam: Elsevier, 2012. P. 213. https://doi.org/10.1016/B978-0-12-381373-2.10135-8
  98. Sanz M.L., Martínez-Castro I. Recent developments in sample preparation for chromatographic analysis of carbohydrates // J. Chromatogr. A. 2007. V. 1153. № 1–2. P. 74. https://doi.org/10.1016/J.CHROMA.2007.01.028
  99. Бирюлин С.И., Посокина Н.Е., Тришканева М.В. Выделение углеводов из растительного сырья и их идентификация с применением капиллярного электрофореза // Овощи России. 2019. Т. 5. С. 84. https://doi.org/10.18619/2072-9146-2019-5-84-87
  100. Norikoshi R., Imanishi H., Ichimura K. A simple and rapid extraction method of carbohydrates from petals or sepals of four floricultural plants for determination of their content // J. Japan. Soc. Hort. Sci. 2008. V. 77. № 3. P. 289.
  101. Wanek W., Heintel S., Richter A. Preparation of starch and other carbon fractions from higher plant leaves for stable carbon isotope analysis // Rapid Commun. Mass Spectrom. 2001. V. 15. № 14. P. 1136. https://doi.org/10.1002/RCM.353
  102. Hassan E.S.R.E., Mutelet F., Moïse J.C. From the dissolution to the extraction of carbohydrates using ionic liquids // RSC Adv. 2013. V. 3. № 43. P. 20219. https://doi.org/10.1039/C3RA42640H
  103. Fishman M.L., Chau H.K. Cooke P.H., Yadav M.P., Hotchkiss A.T. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp // Food Hydrocoll. 2009. V. 23. № 6. P. 1554. https://doi.org/10.1016/J.FOODHYD.2008.10.015
  104. Montañés F., Fornari T., Stateva R.P., Olano A., Ibáñez E. Solubility of carbohydrates in supercritical carbon dioxide with (ethanol + water) cosolvent // J. Supercrit. Fluids. 2009. V. 49. № 1. P. 16. https://doi.org/10.1016/J.SUPFLU.2008.11.014
  105. Montañés F., Olano A., Reglero G., Ibáñez E., Fornari T. Supercritical technology as an alternative to fractionate prebiotic galactooligosaccharides // Sep. Purif. Technol. 2009. V. 66. № 2. P. 383. https://doi.org/10.1016/J.SEPPUR.2008.12.006
  106. Guan J., Yang F.Q., Li S.P. Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry // Molecules. 2010. V. 15. № 6. P. 4227. https://doi.org/10.3390/molecules15064227
  107. Cai K., Hu D., Lei B., Zhao H., Pan W., Song B. Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method // Anal. Chim. Acta. 2015. V. 882. P. 90. https://doi.org/10.1016/J.ACA.2015.03.013
  108. Ruiz-Matute A.I., Ramos L., Martínez-Castro I., Sanz M.L. Fractionation of honey carbohydrates using pressurized liquid extraction with activated charcoal // J. Agric. Food Chem. 2008. V. 56. № 18. P. 8309. https://doi.org/10.1021/JF8014552
  109. Al-Suod H., Ratiu I.A., Górecki R., Buszewski B. Pressurized liquid extraction of cyclitols and sugars: Optimization of extraction parameters and selective separation // J. Sep. Sci. 2019. V. 42. № 6. P. 1265. https://doi.org/10.1002/JSSC.201801269
  110. de Villiers A., Lynen F., Crouch A., Sandra P. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine // Chromatographia. 2004. V. 59. № 7–8. P. 403. https://doi.org/10.1365/S10337-004-0204-1
  111. Megherbi M., Herbreteau B., Faure R., Dessalces G., Grenier-Loustalot M.F. Solid phase extraction of oligo- and polysaccharides; Application to maltodextrins and honey qualitative analysis // J. Liq. Chromatogr. Relat. Technol. 2008. V. 31. № 7. P. 1033. https://doi.org/10.1080/10826070801924915
  112. Barnes J., Tian L., Loftis J., Hiznay J., Comhair S., Lauer M., Dweik R. Isolation and analysis of sugar nucleotides using solid phase extraction and fluorophore assisted carbohydrate electrophoresis // MethodsX. 2016. V. 3. P. 251. https://doi.org/10.1016/J.MEX.2016.03.010
  113. Morales-Cid G., Simonet B.M., Cárdenas S., Valcárcel M. On-capillary sample clean up method for the electrophoretic determination of carbohydrates in juice samples // Electrophoresis. 2007. V. 28. P. 1557. https://doi.org/10.1002/elps.200600518
  114. Hernández O., Ruiz-Matute A.I., Olano A., Moreno F.J., Sanz M.L. Comparison of fractionation techniques to obtain prebiotic galactooligosaccharides // Int. Dairy J. 2009. V. 19. № 9. P. 531. https://doi.org/10.1016/J.IDAIRYJ.2009.03.002
  115. Ruiz-Matute A.I., Soria A.C., Martínez-Castro I., Sanz M.L. A new methodology based on GC-MS to detect honey adulteration with commercial syrups // J. Agric. Food Chem. 2007. V. 55. № 18. P. 7264. https://doi.org/10.1021/JF070559J
  116. Amelung W., Cheshire M.V., Guggenberger G. Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis // Soil Biol. Biochem. 1996. V. 28. № 12. P. 1631. https://doi.org/10.1016/S0038-0717(96)00248-9
  117. Santos S.M., Duarte A.C., Esteves V.I. Development and application of capillary electrophoresis based method for the assessment of monosaccharide in soil using acid hydrolysis // Talanta. 2007. V. 72. P. 165. https://doi.org/10.1016/j.talanta.2006.10.009
  118. Xiao W., Chen X., Zhang Y., Qu T., Han L. Product analysis for microwave-assisted methanolysis of lignocellulose // Energy and Fuels. 2016. V. 30. № 10. P. 8246. https://doi.org/10.1021/ACS.ENERGYFUELS.6B01186
  119. Arnous A., Meyer A.S. Quantitative prediction of cell wall polysaccharide composition in grape (Vitis vinifera L.) and apple (Malus domestica) skins from acid hydrolysis monosaccharide profiles // J. Agric. Food Chem. 2009. V. 57. № 9. P. 3611. https://doi.org/10.1021/JF900780R
  120. Olennikov D.N., Rokhin A.V., Tankhaeva L.M. Lamiaceae carbohydrates. V. Structure of glucoarabinogalactan from Scutellaria baicalensis // Chem. Nat. Compd. 2008. V. 44. № 5. P. 560. https://doi.org/10.1007/S10600-008-9148-2
  121. Harvey D.J. Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry // J. Chromatogr. B. 2011. V. 879. P. 1196. https://doi.org/10.1016/j.jchromb.2010.11.010
  122. Yu R.B., Dalman N.A.V., Wuethrich A., Quirino J.P. Derivatization of carbohydrates for analysis by liquid chromatography and capillary electrophoresis / Carbohydrate Analysis by Modern Liquid Phase Separation Techniques / Ed. El Rassi Z. Amsterdam: Elsevier, 2021. P. 1. https://doi.org/10.1016/B978-0-12-821447-3.00019-6
  123. Campa C., Rossi M. Capillary electrophoresis of neutral carbohydrates mono-, oligosaccharides, and glycosides / Capillary Electrophoresis / Ed. Schmitt-Kopplin P. Groningen: Springer, 2008. P. 247. https://doi.org/10.1007/978-1-59745-376-9_11
  124. Dupont A.L., Egasse C., Morin A., Vasseur F. Comprehensive characterisation of cellulose- and lignocellulose-degradation products in aged papers: Capillary zone electrophoresis of low-molar mass organic acids, carbohydrates, and aromatic lignin derivatives // Carbohydr. Polym. 2007. V. 68. № 1. P. 1. https://doi.org/10.1016/j.carbpol.2006.07.005
  125. Sjöberg J., Adorjan I., Rosenau T., Kosma P. An optimized CZE method for analysis of mono- and oligomeric aldose mixtures // Carbohydr. Res. 2004. V. 339. № 11. P. 2037. https://doi.org/10.1016/j.carres.2004.06.003
  126. Sato K., Sato K., Okubo A., Yamazaki S. Optimization of derivatization with 2- aminobenzoic acid for determination of monosaccharide composition by capillary electrophoresis // Anal. Biochem. 1998. V. 262. № 2. P. 195. https://doi.org/10.1006/abio.1998.2798
  127. Windwarder M., Figl R., Svehla E., Moscai R., Farcet J.-B., Staudacher E., Kosma P., Altmann F. ‘Hypermethylation’ of anthranilic acid-labeled sugars confers the selectivity required for liquid chromatography-mass spectrometry // Anal. Biochem. 2016. V. 514. P. 24. https://doi.org/10.1016/j.ab.2016.09.008
  128. Lorenz D., Janzon R., Saake B. Determination of uronic acids and neutral carbohydrates in pulp and biomass by hydrolysis, reductive amination and HPAEC-UV // Holzforschung. 2017. V. 71. № 10. P. 767. https://doi.org/10.1515/hf-2017-0020
  129. Vojvodić-Cebin A., Komes D., Ralet M.C. Development and validation of HPLC-DAD method with pre-column PMP derivatization for monomeric profile analysis of polysaccharides from agro-industrial wastes // Polymers. 2022. V. 14. № 3. P. 544. https://doi.org/10.3390/polym14030544
  130. Lattová E., Perreault H. Method for investigation of oligosaccharides using phenylhydrazine derivatization / Glycomics / Eds. Packer N.H., Karlsson N.G. Groningen: Springer, 2009. P. 65. https://doi.org/10.1007/978-1-59745-022-5_5
  131. Nguyen D.T., Lerch H., Zemann A., Bonn G. Separation of derivatized carbohydrates by co-electroosmotic capillary electrophoresis // Chromatographia. 1997. V. 46. № 3. P. 113. https://doi.org/10.1007/BF02495320
  132. Kwon H., Kim J. High performance liquid chromatography of mono- and oligosaccharides derivatized with p-aminobenzoic ethyl ester on a c18-bonded silica column // J. Liq. Chromatogr. 1995. V. 18. № 7. P. 1437. https://doi.org/10.1080/10826079508010422
  133. Blanco D., Muro D., Gutiérrez. M.D. A comparison of pulsed amperometric detection and spectrophotometric detection of carbohydrates in cider brandy by liquid chromatography // Anal. Chim. Acta. 2004. V. 517. № 1–2. P. 65. https://doi.org/10.1016/j.aca.2004.04.056
  134. Evangelista R.A., Liu M.S., Chen F.T.A. Characterization of 9-aminopyrene-1,4,6-trisulfonate derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection // Anal. Chem. 1995. V. 67. № 13. P. 2239. https://doi.org/10.1021/ac00109a051
  135. Albrecht S., Schols H.A., van den Heuvel E.G.H.M., Voragen A.G.J., Gruppen H. CE-LIF-MSn profiling of oligosaccharides in human milk and feces of breast-fed babies // Electrophoresis. 2010. V. 31. № 7. P. 1264. https://doi.org/10.1002/elps.200900646
  136. Chen F.T.A., Dobashi T.S., Evangelista R.A. Quantitative analysis of sugar constituents of glycoproteins by capillary electrophoresis // Glycobiology. 1998. V. 8. № 11. P. 1045. https://doi.org/10.1093/GLYCOB/8.11.1045
  137. Chiesa C., Horváth C. Capillary zone electrophoresis of malto-oligosaccharides derivatized with 8-aminonaphthalene-1,3,6-trisulfonic acid // J. Chromatogr. A. 1993. V. 645. № 2. P. 337. https://doi.org/10.1016/0021-9673(93)83394-8
  138. Larsson M., Sundberg R., Folestad S. On-line capillary electrophoresis with mass spectrometry detection for the analysis of carbohydrates after derivatization with 8-aminonaphthalene-1,3,6-trisulfonic acid // J. Chromatogr. A. 2001. V. 934. № 1–2. P. 75. https://doi.org/10.1016/S0021-9673(01)01274-2
  139. Sato K., Sato K., Okubo A., Yamazaki S. Determination of monosaccharides derivatized with 2-aminobenzoic acid by capillary electrophoresis // Anal. Biochem. 1997. V. 251. № 1. P. 119. https://doi.org/10.1006/ABIO.1997.2266
  140. Saddic G.N., Dhume S.T., Anumula K.R. Carbohydrate composition analysis of glycoproteins by HPLC using highly fluorescent anthranilic acid (AA) tag / Po-st-translational Modifications of Proteins / Ed. Kannicht C. Groningen: Springer, 2008. P. 215. https://doi.org/10.1007/978-1-60327-084-7_15
  141. Stepan H., Staudacher E. Optimization of monosaccharide determination using anthranilic acid and 1-phenyl-3-methyl-5-pyrazolone for gastropod analysis // Anal. Biochem. 2011. V. 418. № 1. P. 24. https://doi.org/10.1016/j.ab.2011.07.005
  142. Wang W., Wang Y., Chen F., Zheng F. Comparison of determination of sugar-PMP derivatives by two different stationary phases and two HPLC detectors: C18 vs. amide columns and DAD vs. ELSD // J. Food Compos. Anal. 2021. V. 96. Article 103715. https://doi.org/10.1016/j.jfca.2020.103715
  143. Fan B., Li T., Song X., Wu C., Qian C. A rapid, accurate and sensitive method for determination of monosaccharides in different varieties of Osmanthus fragrans Lour by pre-column derivatization with HPLC-MS/MS // Int. J. Biol. Macromol. 2019. V. 125. P. 221. https://doi.org/10.1016/j.ijbiomac.2018.12.033
  144. Rajendiran V., El Rassi Z. Reversed-phase capillary electrochromatography of pre-column derivatized mono- and oligosaccharides with three different ultraviolet absorbing tags // J. Chromatogr. A. 2022. V. 1671. Article 463025. https://doi.org/10.1016/j.chroma.2022.463025
  145. Alyuruk H., Kontas A., Altay O. A comparative study of two HPLC methods for dissolved monosaccharide analysis in seawater using 2-amino benzamide and 2-amino pyrazine as pre-column derivatization reagents // Talanta. 2021. V. 234. Article 122629. https://doi.org/10.1016/J.TALANTA.2021.122629

Copyright (c) 2023 Л.А. Карцова, А.В. Малюшевская, Е.А. Колобова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies