Scale Resistance of Titanium Silicide Ti5Si–Titanium-Aluminide TiAl3 Powder Composites

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The microstructure, phase composition, and resistance to oxidation upon heating in air in the temperature range of 600–1100°С for composites synthesized in the gasless combustion mode of reactive powder mixtures of titanium, aluminum, and silicon have been studied. Silicide Ti5Si3 and titanium trialuminide TiAl3 were synthesized from two-component mixtures. The combustion products of ternary mixtures contain Ti5Si3 and TiAl3, the ratio of which depends on the aluminum content in the reaction mixtures. The scale resistance of the synthesized powder composites is determined to a greater extent by the microstructure of the granules than by their phase composition. The composition was determined of the reaction powder mixture, the combustion products of which have a scale resistance 1.5–3 times higher than the combustion products of the other studied compositions.

Sobre autores

G. Pribytkov

Federal State Budgetary Institution “Institute of Strength Physics and Materials Science”, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia

Email: gapribyt@mail.ru
Россия, 634055, Томск, пр. Академический, 2/4

V. Korzhova

Federal State Budgetary Institution “Institute of Strength Physics and Materials Science”, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia

Email: gapribyt@mail.ru
Россия, 634055, Томск, пр. Академический, 2/4

I. Firsina

Federal State Budgetary Institution “Institute of Strength Physics and Materials Science”, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia

Email: gapribyt@mail.ru
Россия, 634055, Томск, пр. Академический, 2/4

A. Baranovskiy

Federal State Budgetary Institution “Institute of Strength Physics and Materials Science”, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia

Email: gapribyt@mail.ru
Россия, 634055, Томск, пр. Академический, 2/4

V. Krivopalov

Federal State Budgetary Institution “Institute of Strength Physics and Materials Science”, Siberian Branch, Russian Academy of Sciences, 634055, Tomsk, Russia

Autor responsável pela correspondência
Email: gapribyt@mail.ru
Россия, 634055, Томск, пр. Академический, 2/4

Bibliografia

  1. Головко Э.И. Высокотемпературное окисление металлов и сплавов. Справочник. Киев: Наук. Думка, 1980. 296 с.
  2. Dai J., Zhu J., Chen C., Weng F. // J. Alloys and Compounds. 2016. V. 685. P. 784–798.
  3. Mitra R. // Internal Materials Reviews. 2006. V. 51. P. 13–64.
  4. Pribytkov G.A., Krinitsyn M.G., Korzhova V.V. et al. // Prot. Met. Phys. Chem. Surf. 2022. V. 58. P. 70–75.
  5. Yoshihara M.M., Miura K. // Intermetallics. 1995. V. 3. P. 351–363.
  6. Quiang S., Liu B., Li J. et al. // Materials Science and Engineering. Powder metallurgy. 2015. V. 20(4). P. 616–622.
  7. Dong Z., Jiang H., Feng X., Wang Z. // Trans. Nonferrous Met. Soc. China. 2006. V. 16. P. 2004–2008.
  8. Liang W., Zhao X.G. // Scripta mater. 2001. V. 44. P. 1049–1054.
  9. Wu Y., Wang A.H., Zhang Z. et al. // Applied Surface Science. 2014. V. 305. P. 16–23.
  10. Riley D.P. // Intermetallics. 2006. V. 14. P. 770–775.
  11. Vojtech D., Kubatik T., Pavlickova M., Maixner J. // Intermetallics. 2006. V. 14. P. 1181–1186.
  12. Udayashankar N.K., Rajasekaran S., Nayak Jagannath // Trans. Indian Inst. Met. 2008. V. 61. № 2–3. P. 231–233.
  13. Li Z., Gao W., He Y., Li S. // High Temperature Materials and Processes. 2002. V. 21. № 1–2. P. 35–45.
  14. Lavrenko V.O., Firstov S.O., Panasyuk A.D. et al. // Powder Metallurgy and Metal Ceramics. 2003. V. 42. № 3–4. P. 184–188.
  15. Sun F.S., Kim S.E., Cao C.X. et al. // Scripta Materialia. 2001. V. 456. P. 383–389.
  16. Sun F.S., Froes F.H. (Sam) // Materials Science and Engineering A. 2003. V. 345. P. 262–269.
  17. Tkachenko S., Datskevich O., Dvorak K., Kulak L. // J. Alloys and Compounds. 2017. V. 694. P. 1098–1108.
  18. Nov’ak P., Michalcov’a A., Šeráak J. et al. // J. Alloys and Compounds. 2009. V. 470. P. 123–126.
  19. Novak P., Pruša F., Šerak J. et al. // J. Alloys and Compounds. 2010. V. 504. P. 320–324.
  20. Zha M., Wang H.Y., Li S.T. et al. // Materials Chemistry and Physics. 2009. V. 114. P. 709–715.
  21. Zha M., Wang H.Y., Li S.T. et al. // ISIJ International. 2009. V 49. № 3. P. 453–457.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (43KB)
3.

Baixar (5MB)
4.

Baixar (351KB)
5.

Baixar (403KB)

Declaração de direitos autorais © Г.А. Прибытков, В.В. Коржова, И.А. Фирсина, А.В. Барановский, В.П. Кривопалов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies