ЭЛЕКТРОМАГНИТНЫЕ СВОЙСТВА НЕЙТРИНО В УПРУГОМ РАССЕЯНИИ НЕЙТРИНО НА ПРОТОНЕ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Подробно рассматривается вклад электромагнитных характеристик нейтрино в упругое рассеяние нейтрино на протоне. Электромагнитные свойства нейтрино вводятся через зарядовый, магнитный, электрический и анапольный формфакторы в базисе массовых состояний нейтрино. При этом учитываются эффекты смешивания трех нейтринных состояний и эффекты изменения флейвора нейтрино, движущегося от источника к детектору. Также учитываются слабые нейтральные и электромагнитные формфакторы нуклона. Проведено сравнение численных результатов для дифференциального сечения упругого рассеяния нейтрино на протоне с учетом нейтринных зарядового радиуса и магнитного момента с предсказаниями Стандартной модели для реакторных и ускорительных нейтрино.

Об авторах

К. Кузаков

Московский государственный университет имени М.В. Ломоносова, физический факультет

Автор, ответственный за переписку.
Email: kouzakov@srd.sinp.msu.ru
Россия, 119991, Москва

Ф. Лазарев

Московский государственный университет имени М.В. Ломоносова, физический факультет

Автор, ответственный за переписку.
Email: lazarev.fm15@physics.msu.ru
Россия, 119991, Москва

А. Студеникин

Московский государственный университет имени М.В. Ломоносова, физический факультет

Автор, ответственный за переписку.
Email: studenik@srd.sinp.msu.ru
Россия, 119991, Москва

Список литературы

  1. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).
  2. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and S. Zhou, Ann. Phys. (Berlin) 528, 198 (2016).
  3. А. И. Студеникин, К. А. Кузаков, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. №5, 3 (2020) [Mosc. Univ. Phys. Bull. 75, 379 (2020)].
  4. J. Bernabéu, L. G. Cabral-Rosetti, J. Papavassiliou, and J. Vidal, Phys. Rev. D 62, 113012 (2000).
  5. J. Bernabéu, J. Papavassiliou, and J. Vidal, Phys. Rev. Lett. 89, 101802 (2002).
  6. J. Bernabéu, J. Papavassiliou, and J. Vidal, Nucl. Phys. B 680, 450 (2004).
  7. K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
  8. L. Alvarez Ruso et al., arXiv:2203.09030 [hep-ph].
  9. Q. Chen, Effective Field Theory Applications: From Dark Matter to Neutrino Nucleon Scattering, Theses and Dissertations–Physics and Astronomy (University of Kentucky, 2021), p. 86.
  10. O. Tomalak, P. Machado, V. Pandey, and R. Plestid, J. High Energy Phys. 2021, 97 (2021).
  11. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, arXiv:2105.07939.
  12. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, Nat. Commun. 13, 5286 (2022).
  13. R. S. Sufian, K.-F. Liu, and D. G. Richards, J. High Energy Phys. 2020, 1 (2020).
  14. G. D. Megias, S. Bolognesi, M. B. Barbaro, and E. Tomasi-Gustafsson, Phys. Rev. C 101, 025501 (2020).
  15. X. Zhang, T. J. Hobbs, and G. A. Miller, Phys. Rev. D 102, 074026 (2020).
  16. J. Liang and K.-F. Liu, arXiv:2008.12389 [hep-lat].
  17. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).
  18. D. Akimov et al., Science 357, 1123 (2017).
  19. J. Yang, J. A. Hernandez, and J. Piekarewicz, Phys. Rev. C 100, 054301 (2019).
  20. C. G. Payne, S. Bacca, G. Hagen, W. G. Jiang, and T. Papenbrock, Phys. Rev. C 100, 061304(R) (2019).
  21. M. Hoferichter, J. Menendez, and A. Schwenk, Phys. Rev. D 102, 074018 (2020).
  22. M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D 98, 113010 (2018).
  23. O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola, and J. W. F. Valle, J. High Energy Phys. 2020, 130 (2020).
  24. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang, Phys. Rev. D 102, 015030 (2020).
  25. H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, R. Wink, and CONUS Collab., Eur. Phys. J. C 82, 813 (2022).
  26. M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, C. A. Ternes, and Y. Y. Zhang, J. High Energy Phys. 2022, 164 (2022).
  27. F. An et al., J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016).
  28. M. Nowakowski, E. A. Paschos, and J. M. Rodriguez, Eur. J. Phys. 26, 545 (2005).
  29. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  30. E. Aprile et al., Phys. Rev. D 102, 072004 (2020).
  31. А. И. Тернов, Письма в ЖЭТФ 104, 75 (2016) [JETP Lett. 104, 75 (2016)].
  32. A. I. Ternov, Phys. Rev. D 94, 093008 (2016).
  33. K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 271 (1990).
  34. G. G. Raffelt, Phys. Rep. 320, 319 (1999).
  35. W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).
  36. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007).
  37. W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk, Phys. Rev. C 79, 065204 (2009).
  38. D. K. Papoulias and T. S. Kosmas, Adv. High Energy Phys. 2016, 1490860 (2016).
  39. G. T. Garvey, W. C. Louis, and D. H. White, Phys. Rev. C 48, 761 (1993).
  40. K. A. Kouzakov and A. I. Studenikin, Phys. Rev. D 95, 055013 (2017).
  41. P. Abratenko et al. (MicroBooNE Collab.), Phys. Rev. Lett. 128, 151801 (2022).

© Pleiades Publishing, Ltd., 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах