ЭЛЕКТРОМАГНИТНЫЕ СВОЙСТВА НЕЙТРИНО В УПРУГОМ РАССЕЯНИИ НЕЙТРИНО НА ПРОТОНЕ

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Подробно рассматривается вклад электромагнитных характеристик нейтрино в упругое рассеяние нейтрино на протоне. Электромагнитные свойства нейтрино вводятся через зарядовый, магнитный, электрический и анапольный формфакторы в базисе массовых состояний нейтрино. При этом учитываются эффекты смешивания трех нейтринных состояний и эффекты изменения флейвора нейтрино, движущегося от источника к детектору. Также учитываются слабые нейтральные и электромагнитные формфакторы нуклона. Проведено сравнение численных результатов для дифференциального сечения упругого рассеяния нейтрино на протоне с учетом нейтринных зарядового радиуса и магнитного момента с предсказаниями Стандартной модели для реакторных и ускорительных нейтрино.

Sobre autores

К. Кузаков

Московский государственный университет имени М.В. Ломоносова, физический факультет

Autor responsável pela correspondência
Email: kouzakov@srd.sinp.msu.ru
Россия, 119991, Москва

Ф. Лазарев

Московский государственный университет имени М.В. Ломоносова, физический факультет

Autor responsável pela correspondência
Email: lazarev.fm15@physics.msu.ru
Россия, 119991, Москва

А. Студеникин

Московский государственный университет имени М.В. Ломоносова, физический факультет

Autor responsável pela correspondência
Email: studenik@srd.sinp.msu.ru
Россия, 119991, Москва

Bibliografia

  1. C. Giunti and A. Studenikin, Rev. Mod. Phys. 87, 531 (2015).
  2. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and S. Zhou, Ann. Phys. (Berlin) 528, 198 (2016).
  3. А. И. Студеникин, К. А. Кузаков, Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. №5, 3 (2020) [Mosc. Univ. Phys. Bull. 75, 379 (2020)].
  4. J. Bernabéu, L. G. Cabral-Rosetti, J. Papavassiliou, and J. Vidal, Phys. Rev. D 62, 113012 (2000).
  5. J. Bernabéu, J. Papavassiliou, and J. Vidal, Phys. Rev. Lett. 89, 101802 (2002).
  6. J. Bernabéu, J. Papavassiliou, and J. Vidal, Nucl. Phys. B 680, 450 (2004).
  7. K. Fujikawa and R. Shrock, Phys. Rev. Lett. 45, 963 (1980).
  8. L. Alvarez Ruso et al., arXiv:2203.09030 [hep-ph].
  9. Q. Chen, Effective Field Theory Applications: From Dark Matter to Neutrino Nucleon Scattering, Theses and Dissertations–Physics and Astronomy (University of Kentucky, 2021), p. 86.
  10. O. Tomalak, P. Machado, V. Pandey, and R. Plestid, J. High Energy Phys. 2021, 97 (2021).
  11. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, arXiv:2105.07939.
  12. O. Tomalak, Q. Chen, R. J. Hill, and K. S. McFarland, Nat. Commun. 13, 5286 (2022).
  13. R. S. Sufian, K.-F. Liu, and D. G. Richards, J. High Energy Phys. 2020, 1 (2020).
  14. G. D. Megias, S. Bolognesi, M. B. Barbaro, and E. Tomasi-Gustafsson, Phys. Rev. C 101, 025501 (2020).
  15. X. Zhang, T. J. Hobbs, and G. A. Miller, Phys. Rev. D 102, 074026 (2020).
  16. J. Liang and K.-F. Liu, arXiv:2008.12389 [hep-lat].
  17. D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).
  18. D. Akimov et al., Science 357, 1123 (2017).
  19. J. Yang, J. A. Hernandez, and J. Piekarewicz, Phys. Rev. C 100, 054301 (2019).
  20. C. G. Payne, S. Bacca, G. Hagen, W. G. Jiang, and T. Papenbrock, Phys. Rev. C 100, 061304(R) (2019).
  21. M. Hoferichter, J. Menendez, and A. Schwenk, Phys. Rev. D 102, 074018 (2020).
  22. M. Cadeddu, C. Giunti, K. A. Kouzakov, Y. F. Li, A. I. Studenikin, and Y. Y. Zhang, Phys. Rev. D 98, 113010 (2018).
  23. O. G. Miranda, D. K. Papoulias, G. Sanchez Garcia, O. Sanders, M. Tórtola, and J. W. F. Valle, J. High Energy Phys. 2020, 130 (2020).
  24. M. Cadeddu, F. Dordei, C. Giunti, Y. F. Li, E. Picciau, and Y. Y. Zhang, Phys. Rev. D 102, 015030 (2020).
  25. H. Bonet, A. Bonhomme, C. Buck, K. Fülber, J. Hakenmüller, J. Hempfling, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker, R. Wink, and CONUS Collab., Eur. Phys. J. C 82, 813 (2022).
  26. M. Atzori Corona, M. Cadeddu, N. Cargioli, F. Dordei, C. Giunti, Y. F. Li, C. A. Ternes, and Y. Y. Zhang, J. High Energy Phys. 2022, 164 (2022).
  27. F. An et al., J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016).
  28. M. Nowakowski, E. A. Paschos, and J. M. Rodriguez, Eur. J. Phys. 26, 545 (2005).
  29. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  30. E. Aprile et al., Phys. Rev. D 102, 072004 (2020).
  31. А. И. Тернов, Письма в ЖЭТФ 104, 75 (2016) [JETP Lett. 104, 75 (2016)].
  32. A. I. Ternov, Phys. Rev. D 94, 093008 (2016).
  33. K. S. Babu and R. N. Mohapatra, Phys. Rev. D 41, 271 (1990).
  34. G. G. Raffelt, Phys. Rep. 320, 319 (1999).
  35. W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001).
  36. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press, 2007).
  37. W. M. Alberico, S. M. Bilenky, C. Giunti, and K. M. Graczyk, Phys. Rev. C 79, 065204 (2009).
  38. D. K. Papoulias and T. S. Kosmas, Adv. High Energy Phys. 2016, 1490860 (2016).
  39. G. T. Garvey, W. C. Louis, and D. H. White, Phys. Rev. C 48, 761 (1993).
  40. K. A. Kouzakov and A. I. Studenikin, Phys. Rev. D 95, 055013 (2017).
  41. P. Abratenko et al. (MicroBooNE Collab.), Phys. Rev. Lett. 128, 151801 (2022).

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies