СТРУКТУРЫ МАТРИЦ СЛАБОГО СМЕШИВАНИЯ КАК СЛЕДСТВИЕ НАРУШЕННОЙ ЗЕРКАЛЬНОЙ СИММЕТРИИ

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Представлена модель нарушения симметрии системы, которая может спонтанно выбирать левый или правый характер слабого тока. При иерархической структуре спектра масс фермионов такая зеркально-симметричная система позволяет воспроизвести все качественные свойства матриц слабого смешивания и кварков (матрица CKM), и лептонов (матрица PMNS), причем без дополнительного численного подбора параметров модели. Иерархия матричных элементов CKM прямо связывается с иерархическим спектром масс поколений кварков. Качественные свойства матрицы PMNS возникают при инверсном характере спектра (\(m_{3}\) —  наименьшая масса) и дираковской природе нейтрино СМ. Сравнительная малость угла смешивания нейтрино \(\theta_{13}\) обусловлена здесь малостью \(m_{3}\) и малостью отношений масс заряженных лептонов \(m_{e}/m_{\mu}\).

Sobre autores

И. Дятлов

НИЦ ‘‘Курчатовский институт’’ — ПИЯФ

Autor responsável pela correspondência
Email: dyatlov@thd.pnpi.spb.ru
Россия, Гатчина

Bibliografia

  1. T. D. Lee and C. N. Yang, Phys. Rev. 102, 290 (1956).
  2. T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956).
  3. J. Maalampi and M. Roos, Phys. Rep. 186, 53 (1990).
  4. L. B. Okun, hep-ph/0606202; Phys. Usp. 50, 380 (2007).
  5. A. B. Kaganovich, arXiv: 2105.03878 [hep-ph].
  6. G. Triantophyllou, arXiv: 1609.03404 [physics, gen-ph].
  7. P. Q. Hung, Phys. Lett. B 649, 275 (2007); Pai-Hong Gu, Phys. Lett. B 713, 425 (2012).
  8. S. Chakdar, K. Gosh, S. Nandi, and S. K. Rai, arXiv: 1305.2641 [hep-ph].
  9. H. Fritzsch, Phys. Lett. B 70, 436 (1977); 73, 317 (1978).
  10. C. D. Froggatt, M. Gibson, H. B. Nielsen, and D. J. Smith, hep-ph/9706212; C. D. Froggatt and H. B. Nielsen, hep-ph/9905445.
  11. И. Т. Дятлов, ЯФ 77, 775 (2014) [Phys. At. Nucl. 77, 733 (2014)]; arXiv: 1312.4339 [hep-ph].
  12. R. N. Mohapatra and A. Y. Smirnov, hep-ph/0603118; S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, arXiv: 1402.4271 [hep-ph]; L. Maiani, arXiv: 1406.5503 [hep-ph].
  13. И. Т. Дятлов, ЯФ 78, 522 (2015); 78, 1015 (2015); 84, 460 (2021) [Phys. At. Nucl. 78, 485 (2015); 78, 956 (2015); 84, 773 (2021)]; arXiv: 1502.01501; 1509.07280 [hep-ph].
  14. S. Gariazzo, M. Gerbino, T. Brickmann, M. Lattanzi, O. Mena, T. Shwetz, S. R. Chouldhury, K. Freese, S. Hannestad, C. A. Ternes, and M. Tortola, arXiv: 2205.02195v1 [hep-ph].
  15. R. L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  16. И. Т. Дятлов, ЯФ 80, 368 (2017) [Phys. At. Nucl. 80, 679 (2017)]; arXiv: 1703.00722 [hep-ph].
  17. S. L. Adler, Phys. Rev. 177, 2426 (1969); J. Preskill, Ann. Phys. (N.Y.) 210, 323 (1991).
  18. И. Т. Дятлов, ЯФ 80, 253 (2017) [Phys. At. Nucl. 80, 469 (2017)].
  19. F. Bernard, arXiv: 1611.0859 [hep-ph].
  20. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
  21. C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 147, 277 (1979); C. D. Froggatt, G. Lowe, and H. B. Nielsen, Nucl. Phys. B 414, 579 (1994).
  22. M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys. B 398, 319 (1993); 420, 468 (1994); hep-ph/9212298; hep-ph/9310320.
  23. M. Fedele, A. Mastroddi, and M. Valli, arXiv: 2009.05587 [hep-ph].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (26KB)
3.

Baixar (53KB)

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies