MODELLING OF THE NEUTRINO TAGGING SYSTEM FOR THE NEAR DETECTOR IN THE P2O EXPERIMENT

Abstract

This paper describes the method of neutrino tagging in neutrino experiments and the principles of its realization. The neutrino tagging method consists in the kinematic reconstruction of the neutrino formation reaction – the decay π±( ±) → µ± + νµ(νµ) – by measuring the parameters of the charged particles – parent meson and muon – using a tagging station. This allows us to recover the energy, direction and point of neutrino formation with a high accuracy. A description of the neutrino tagging method and the potential advantages of the resulting beam for short-base experiments are presented. The scheme of the neutrino tagging station is considered and its operation is modeled.

About the authors

V. N. Goryachev

National Research Center “Kurchatov Institute”– IHEP

Protvino, Russia

F. N. Novoskoltsev

National Research Center “Kurchatov Institute”– IHEP

Protvino, Russia

R. Yu. Sinyukov

National Research Center “Kurchatov Institute”– IHEP

Protvino, Russia

A. A. Sokolov

Email: sokolov_a@ihep.ru

References

  1. Б. М. Понтекорво, ЖЭТФ 33, 549 (1957).
  2. Б. М. Понтекорво, ЖЭТФ 34, 247 (1958).
  3. Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962). https://doi.org/10.1143/ptp.28.870
  4. Б. М. Понтекорво, ЖЭТФ 53, 1717 (1967).
  5. A. V. Akindinov, E. G. Anassontzis, G. Anton, M. Ardid, J. Aublin, B. Baret, V. Bertin, S. Bourret, C. Bozza, M. Bruchner, R. Bruijn, J. Brunner, M. Chabab, N. Chau, A. S. Chepurnov, M. Colomer Molla, et al., Eur. Phys. J. C 79, 758 (2019). https://doi.org/10.1140/epjc/s10052-019-7259-5
  6. S. K. Raut, R. S. Singh, and S. U. Sankar, Phys. Lett. B 696, 227 (2011). https://doi.org/10.1016/j.physletb.2010.12.029
  7. A. Dighe, S. Goswami, and S. Ray, Phys. Rev. Lett. 105, 261802 (2010). https://doi.org/10.1103/physrevlett.105.261802
  8. B. Pontecorvo, Lett. Nuovo Cimento 25, 257 (1979). https://doi.org/10.1007/bf02813638
  9. Ф. Н. Новоскольцев, Р. Ю. Синюков, А. А. Соколов, Изв. РАН. Сер. физ. 87, 1120 (2023). https://doi.org/10.31857/S0367676523702010
  10. D. C. Carey, R. J. Stefanski, and L. C. Teng, IEEE Trans. Nucl. Sci. 18, 755 (1971). https://doi.org/10.1109/tns.1971.4326174
  11. V. B. Anikeev, S. V. Belikov, S. N. Gurzhiev, A. G. Denisov, S. P. Denisov, N. N. Fedjakin, V. I. Kochetkov, V. M. Korablev, V. I. Koreshev, V. V. Lipaev, S. V. Los, V. N. Mikhailin, A. M. Rybin, A. N. Sytin, A. G. Bogdanov, T. M. Kirina, et al., Nucl. Instrum. Methods A 419, 596 (1998). https://doi.org/10.1016/s0168-9002(98)00837-7
  12. G. Aglieri Rinella, D. Alvarez Feito, R. Arcidiacono, C. Biino, S. Bonacini, A. Ceccucci, S. Chiozzi, E. Cortina Gil, A. Cotta Ramusino, H. Danielsson, J. Degrange, M. Fiorini, L. Federici, E. Gamberini, A. Gianoli, J. Kaplon, et al., JINST 14, P07010 (2019). https://doi.org/10.1088/1748-0221/14/07/P07010
  13. A. Lai, IEEE, Sydney, NSW, Australia, 1 (2018).
  14. H.F.W. Sadrozinski, S. Ely, V. Fadeyev, Z. Galloway, J. Ngo, C. Parker, B. Petersen, A. Seiden, A. Zatserklyaniy, N. Cartiglia, F. Marchetto, M. Bruzzi, R. Mori, M. Scaringella, and A. Vinattieri, Nucl. Instrum. Methods A 730, 226 (2013). https://doi.org/10.1016/j.nima.2013.06.033
  15. M. Perrin-Terrin, Eur. Phys. J. C 82, 465 (2022). https://doi.org/10.1140/epjc/s10052-022-10397-8
  16. F. N. Novoskoltsev, R. Yu. Sinyukov, and A. A. Sokolov, Phys. At. Nucl. 86, 1450 (2023). https://doi.org/10.1134/s1063778824010393

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).