BINDING ENERGIES OF 3H, 3He NUCLEI IN THREE-BODY FADDEEV EQUATIONS WITH DIRECT INTEGRATION

Cover Page

Cite item

Full Text

Abstract

The paper presents a new method for searching for binding energies of three-body systems based on the numerical solution of a system of homogeneous Faddeev equations with respect to the matrix T with direct numerical integration without the traditional partial wave decomposition. In this paper, we tried to demonstrate on the simplest systems with three point nucleons the features of the numerical solution of homogeneous Faddeev equations, two-body 𝑡-matrices in which both local and non-local potentials are generated. The characteristic behavior of the binding energies of three bodies has been established depending on the change in the number of nodes of the radial grid of relative momenta. The paper compares the method of Pade approximants and the algebraic method of matrix inversion in the numerical solution of the Lippmann–Schwinger equations. It is shown that both methods can be used in problems of searching for binding energies of systems of three bodies. In the chosen numerical scheme, the influence of Coulomb repulsion and the three-body 𝑁𝑁𝑁 force on the binding energies of the systems under consideration is estimated. It is shown that the missing 𝑁𝑁𝑁 interaction must be charge-dependent in order to explain the skew in the missing contributions to the binding energies of the 3He, 3H nuclei under consideration at the level of 143 keV.

About the authors

A. Gapchenko

Tomsk State University

Tomsk, Russia

O. Goleva

Tomsk State University

Tomsk, Russia

M. Egorov

Tomsk State University; Joint Institute for Nuclear Research, Bogoliuubov Laboratory of Theoretical Physics

Email: egorovphys@mail.ru
Tomsk, Russia; Dubna, Russia

References

  1. V. G. J. Stoks, R. A. M. Klomp, C. P. F. Terheggen, and J. J. de Swart, Phys. Rev. C 49, 2950 (1994).
  2. Ch. Elster, W. Schadow, A. Nogga, and W. Glockle, Few-Body Syst. 27, 83 (1999).
  3. A. Nogga, H. Kamada, and W. Glockle, Phys. Rev. Lett. 85, 944 (2000).
  4. R. Machleidt, Phys. Rev. C 63, 024001 (2001).
  5. E. Epelbaum, A. Nogga, W. Glockle, H. Kamada, Ulf-G. Meißner, and H. Witala, Phys. Rev. C 66, 064001 (2002).
  6. I. Filikhin, V. M. Suslov, and B. Vlahovic, Int. J. Mod. Phys. E 25, 1650042 (2016).
  7. Y. Wu, S. Ishikawa, and T. Sasakawa, Few-Body Syst. 15, 145 (1993).
  8. J. L. Friar, G. L. Payne, V. G. J. Stoks, and J. J. de Swart, Phys. Lett. B 311, 4 (1993).
  9. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. C 31, 2266 (1985).
  10. A. Nogga, A. Kievsky, H. Kamada, W. Glockle, L. E. Marcucci, S. Rosati, and M. Viviani, Phys. Rev. C 67, 034004 (2003).
  11. S. A. Coon, M. D. Scadron, P. C. McNamee, B. R. Barrett, D. W. E. Blatt, and B. H. J. McKellar, Nucl. Phys. A 317, 242 (1979).
  12. M. R. Robilotta and H. T. Coelho, Nucl. Phys. A 460, 645 (1986).
  13. S. A. Coon and M. T. Pen˜a, Phys. Rev. C 48, 2559 (1993).
  14. J. L. Friar, D. Huber, and U. van Kolck, Phys. Rev. C 59, 53 (1999).
  15. C. R. Chen, G. L. Payne, J. L. Friar, and B. F. Gibson, Phys. Rev. 33, 1740 (1986).
  16. A. Nogga, D. Huber, H. Kamada, and W. Glockle, Phys. Lett. B 409, 19 (1997).
  17. M. L. Golberger and K. M. Watson, Collision Theory (John Wiley & Sons, New York, 1964).
  18. Z. Papp and W. Plessas, Phys. Rev. C 54, 50 (1996).
  19. Z. Papp, C. Y. Hu, Z. T. Hlousek, B. Konya, and S. L. Yakovlev, Phys. Rev. A 63 062721 (2001).
  20. Sh. Oryu, Phys. Rev. C 73, 054001 (2006); Phys. Rev. C 76, 069901 (Erratum) (2007).
  21. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
  22. H. Liu, Ch. Elster, and W. Glockle, Phys. Rev. C 72, 054003 (2005).
  23. M. Stingl and A. S. Rinat, Nucl. Phys. A 154, 613 (1970).
  24. W. Glockle, The Quantum Mechanical Few-Body Problem (Springer-Verlag Berlin Heidelberg, 1983), Chapt. No. 3.
  25. M. V. Egorov, Phys. At. Nucl. 86, 277 (2023).
  26. J. Haidenbauer, Y. Koike, and W. Plessas, Phys. Rev. C 33, 439 (1986).
  27. Th. A. Rijken, M. M. Nagels, and Y. Yamamoto, Prog. Theor. Phys. Suppl. 185, 14 (2010); http://nnonline.org ESC08c NN code
  28. Th. A. Rijken, arXiv: 1409.5593v1 [nucl-th].
  29. National Nuclear Data Center On-Line Data Service for the ENDSF database, https://www-nds.iaea.org
  30. J. E. Purcell, J. H. Kelley, E. Kwan, C. G. Sheu, and H. R. Weller, Nucl. Phys. A 848, 1 (2010).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).