Changes in Na+/K+-ATPASE activity and biomembrane lipid composition in smolts of pink salmon Oncorhynchus gorbuscha (Salmonidae) during their downstream migration in the Indera River (White Sea basin)
- Авторлар: Kaivarainen E.I.1, Rendakov N.L.1, Khurtina S.N.1, Manoylova D.I.1, Efremov D.A.1, Murzina S.A.1
-
Мекемелер:
- Institute of Biology, Karelian Research Center, Russian Academy of Sciences
- Шығарылым: Том 65, № 4 (2025)
- Беттер: 493-508
- Бөлім: Articles
- URL: https://journals.rcsi.science/0042-8752/article/view/353921
- DOI: https://doi.org/10.7868/S3034514625040091
- ID: 353921
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
E. Kaivarainen
Institute of Biology, Karelian Research Center, Russian Academy of SciencesPetrozavodsk, Russia
N. Rendakov
Institute of Biology, Karelian Research Center, Russian Academy of Sciences
Email: nlrend@mail.ru
Petrozavodsk, Russia
S. Khurtina
Institute of Biology, Karelian Research Center, Russian Academy of SciencesPetrozavodsk, Russia
D. Manoylova
Institute of Biology, Karelian Research Center, Russian Academy of SciencesPetrozavodsk, Russia
D. Efremov
Institute of Biology, Karelian Research Center, Russian Academy of SciencesPetrozavodsk, Russia
S. Murzina
Institute of Biology, Karelian Research Center, Russian Academy of SciencesPetrozavodsk, Russia
Әдебиет тізімі
- Алексеев М.Ю., Ткаченко А.В., Зубченко А.В. и др. 2019. Распространение, эффективность нереста и возможность промысла интродуцированой горбуши (Oncorhynchus gorbuscha Walbaum) в реках Мурманской области // Рос. журн. биол. инвазий. Т. 12. № 1. С. 1–13.
- Алтухов Ю.П., Салменкова Е.А., Омельченко В.Т. 1997. Популяционная генетика лососевых рыб. М.: Наука, 288 с.
- Болдырев А.А., Кяйвяряйнен Е.И., Илюха В.А. 2006. Биомембранология: учебное пособие. Петрозаводск: Изд-во КарНЦ РАН, 226 с.
- Веселов А.Е., Павлов Д.С., Барышев И.А. и др. 2016. Полиморфизм покатной молоди горбуши Oncorhynchus gorbuscha в реке Индера (Кольский полуостров) // Вопр. ихтиологии. Т. 56. № 5. С. 571–576. https://doi.org/10.7868/S0042875216040196
- Воронин В.П., Мурзина С.А., Нефёдова З.А. и др. 2021. Сравнительно-видовая характеристика липидов и их динамика в процессе эмбрионального и раннего постэмбрионального развития атлантического лосося (Salmo salar L.) и кумжи (Salmo trutta L.) // Онтогенез. Т. 52. № 2. С. 108–119. https://doi.org/10.31857/S0475145021020099
- Гордеева Н.В., Салменкова Е.А., Прусов С.В. 2015. Динамика биологических и популяционно-генетических показателей у горбуши Oncorhynchus gorbuscha, вселённой в бассейн Белого моря // Вопр. ихтиологии. Т. 55. № 1. С. 45–53. https://doi.org/10.7868/S0042875215010063
- Гринштейн С.В., Кост О.А. 2001. Структурно-функциональные особенности мембранных белков // Успехи биол. химии. Т. 41. С. 77–104.
- Елаев Н.Р., Семенов Е.В. 1974. Изменение активности мембранных АТФаз мозга при воздействии холино- и адреномиметических веществ // Биохимия. Т. 39. № 3. С. 636–640.
- Кабаков Р. 2016. R в действии. Анализ и визуализация данных на языке R. М.: ДМК Пресс, 580 с.
- Кяйвяряйнен Е.И., Рендаков Н.Л., Ефремов Д.А., Немова Н.Н. 2021. Активность Na+/K+-АТФазы у смолтов горбуши Oncorhynchus gorbuscha (Walbaum, 1792) бассейна Белого моря при содержании в садках с пресной, эстуарной и морской водой // Докл. РАН. Науки о жизни. Т. 501. № 1. С. 532–537. https://doi.org/10.31857/S268673892106007X
- Лопухин Ю.М., Арчаков А.И., Владимиров Ю.А., Коган Э.М. 1983. Холестериноз. М.: Медицина, 352 с.
- Лось Д.А. 2001. Структура, регуляция экспрессии и функционирование десатураз жирных кислот // Успехи биол. химии. Т. 41. С. 163–198.
- Мурзина С.А., Нефедова З.А., Пеккоева С.Н. и др. 2019. Динамика содержания липидов и жирных кислот на ранних стадиях онтогенеза горбуши Oncorhynchus gorbuscha (Walbaum, 1792) в естественных условиях (река Индера, Кольский п-ов) // Онтогенез. Т. 50. № 4. С. 237–246. https://doi.org/10.1134/S0475145019040050
- Немова Н.Н., Кяйвяряйнен Е.И., Рендаков Н.Л. и др. 2021. Содержание кортизола и активность Na+/K+-АТФазы при адаптации молоди горбуши Oncorhynchus gorbuscha (Salmonidae) к изменению солёности среды // Вопр. ихтиологии. Т. 61. № 5. С. 599–606. https://doi.org/10.31857/S0042875221050131
- Нетюхайло Л.Г., Тарасенко Л.М. 2001. Особенности липидного состава плазматических мембран тканей легких при остром эмоционально-болевом стрессе у крыс // Укр. биохим. журн. Т. 73. № 1. С. 115–117.
- Рабинович А.Л. 2008. Температурная зависимость конформационных свойств олигомерных цепей природных липидов: компьютерное моделирование // Биофизика. Т. 53. № 3. С. 426–433.
- Рабинович А.Л., Рипатти П.О. 1994. Полиненасыщенные углеводородные цепи липидов: структура, свойства, функции // Успехи соврем. биологии. Т. 114. № 5. С. 581–594.
- Рабинович А.Л., Корнилов В.В., Балабаев Н.К. и др. 2007. Свойства бислоев ненасыщенных фосфолипидов: влияние холестерина // Биол. мембраны. Т. 24. № 6. С. 490–505.
- Рендаков Н.Л. 2018. Некоторые аспекты стероидной регуляции у костистых рыб // Тр. КарНЦ РАН. № 6. С. 3–21. https://doi.org/10.17076/eb777
- Финагин Л.К. 1980. Обмен холестерина и его регуляция. Киев: Вища шк., 168 с.
- Цыганов Э.П. 1971. Метод прямого метилирования липидов после ТСХ без элюирования с силикагеля // Лаб. дело. Т. 8. С. 490–493.
- Arduini A., Peschechera A., Dottori S. et al. 1996. High performance liquid chromatography of long-chain acylcarnitine and phospholipids in fatty acid turnover studies // J. Lipid Res. V. 37. № 3. P. 684–689. https://doi.org/10.1016/S0022-2275(20)37609-4
- Auel H., Harjes M., da Rocha R. et al. 2002. Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula // Polar Biol. V. 25. № 5. P. 374–383. https://doi.org/10.1007/s00300-001-0354-7
- Bern H.A., Madsen S.S. 1992. A selective survey of the endocrine system of the rainbow trout (Oncorhynchus mykiss) with emphasis on the hormonal regulation of ion balance // Aquaculture. V. 100. № 1–3. P. 237–262. https://doi.org/10.1016/0044-8486(92)90384-W
- Biochemistry of lipids, lipoproteins and membranes. 2002. Amsterdam et al.: Elsevier, 607 p.
- Björnsson B.T., Stefansson S.O., McCormick S.D. 2011. Environmental endocrinology of salmon smoltification // Gen. Comp. Endocrinol. V. 170. № 2. P. 290–298. https://doi.org/10.1016/j.ygcen.2010.07.003
- Blanco G., Mercer R.W. 1998. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function // Am. J. Physiol. Renal Physiol. V. 275. № 5. P. F633–F650. https://doi.org/10.1152/ajprenal.1998.275.5.F633
- Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. V. 72. № 1–2. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Bystriansky J.S., Richards J.G., Schulte P.M., Ballantyne J.S. 2006. Reciprocal expression of gill Na+/K+-ATPase α-subunit isoforms α1a and α1b during seawater acclimation of three salmonid fishes that vary in their salinity tolerance // J. Exp. Biol. V. 209. № 10. P. 1848–1858. https://doi.org/10.1242/jeb.02188
- Clausen T. 1998. Clinical and therapeutic significance of the Na+,K+ pump // Clin. Sci. V. 95. № 1. P. 3–17. https://doi.org/10.1042/cs0950003
- Contreras F.-X., Ernst A.M., Wieland F., Brügger B. 2011. Specificity of intramembrane protein–lipid interactions // Cold Spring Harb. Perspect. Biol. V. 3. № 6. Article a004705. https://doi.org/10.1101/cshperspect.a004705
- Cordier M., Brichon G., Weber J.-M., Zwingelstein G. 2002. Changes in the fatty acid composition of phospholipids in tissues of farmed sea bass (Dicentrarchus labrax) during an annual cycle. Roles of environmental temperature and salinity // Comp. Biochem. Physiol. Pt. B. Biochem. Mol. Biol. V. 133. № 3. P. 281–288. https://doi.org/10.1016/S1096-4959(02)00149-5
- Cornelius F. 1995. Cholesterol modulation of molecular activity of reconstituted shark Na+,K+-ATPase // Biochim. Biophys. Acta. Biomembr. V. 1235. № 2. P. 205–212. https://doi.org/10.1016/0005-2736(95)80006-2
- Cornelius F. 2001. Modulation of Na,K-ATPase and Na-ATPase activity by phospholipids and cholesterol. I. Steady-state kinetics // Biochemistry. V. 40. № 30. P. 8842–8851. https://doi.org/10.1021/bi010541g
- D’Cotta H., Valotaire C., le Gac F., Prunet P. 2000. Synthesis of gill Na+-K+-ATPase in Atlantic salmon smolts: differences in α-mRNA and α-protein levels // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 278. № 1. P. R101–R110. https://doi.org/10.1152/ajpregu.2000.278.1.R101
- Edwards S.L., Marshall W.S. 2013. Principles and patterns of osmoregulation and euryhalinity in fishes // Euryhaline fishes. Cambridge: Acad. Press. P. 1–44. https://doi.org/10.1016/B978-0-12-396951-4.00001-3
- Else P.L., Wu B.J., Storlien L.H., Hulbert A.J. 2003. Molecular activity of Na+,K+-ATPase relates to the packing of membrane lipids // Ann. N.Y. Acad. Sci. V. 986. № 1. P. 525–526. https://doi.org/10.1111/j.1749-6632.2003.tb07240.x
- Erkinaro J., Orell P., Pohjola J.-P. et al. 2022. Development of invasive pink salmon (Oncorhynchus gorbuscha Walbaum) eggs in a large Barents Sea river // J. Fish Biol. V. 101. № 4. P. 1063–1066. https://doi.org/10.1111/jfb.15157
- Evans D.H., Piermarini P.M., Choe K.P. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste // Physiol. Rev. V. 85. № 1. P. 97–177. https://doi.org/10.1152/physrev.00050.2003
- Falk-Petersen S., Hagen W., Kattner G. et al. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill // Can. J. Fish. Aquat. Sci. V. 57. № S3. P. 178–191. https://doi.org/10.1139/f00-194
- Faught E., Vijayan M.M. 2022. The mineralocorticoid receptor functions as a key glucose regulator in the skeletal muscle of zebrafish // Endocrinology. V. 163. № 11. Article bqac149. https://doi.org/10.1210/endocr/bqac149
- Folch J., Lees M., Sloane Stanley G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues // J. Biol. Chem. V. 226. № 1. P. 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Folmar L.C., Dickhoff W.W. 1980. The parr–smolt transformation (smoltification) and seawater adaptation in salmonids // Aquaculture. V. 21. № 1. P. 1–37. https://doi.org/10.1016/0044-8486(80)90123-4
- Gallagher Z.S., Bystriansky J.S., Farrell A.P., Brauner C.J. 2013. A novel pattern of smoltification in the most anadromous salmonid: pink salmon (Oncorhynchus gorbuscha) // Can. J. Fish. Aquat. Sci. V. 70. № 3. P. 349–357. https://doi.org/10.1139/cjfas-2012-0390
- Ge J., Huang M., Zhou Y. et al. 2021. Effects of different temperatures on seawater acclimation in rainbow trout Oncorhynchus mykiss: osmoregulation and branchial phospholipid fatty acid composition // J. Comp. Physiol. B. V. 191. № 4. P. 669–679. https://doi.org/10.1007/s00360-021-01363-z
- Graeve M., Kattner G., Piepenburg D. 1997. Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? // Polar Biol. V. 18. № 1. P. 53–61. https://doi.org/10.1007/s003000050158
- Grant A.M., Gardner M., Nendick L. et al. 2009. Growth and ionoregulatory ontogeny of wild and hatchery-raised juvenile pink salmon (Oncorhynchus gorbuscha) // Can. J. Zool. V. 87. № 3. P. 221–228. https://doi.org/10.1139/Z08-149
- Grant A.M., Gardner M., Hanson L.M. et al. 2010. Early life stage salinity tolerance of wild and hatchery-reared juvenile pink salmon Oncorhynchus gorbuscha // J. Fish Biol. V. 77. № 6. P. 1282–1292. https://doi.org/10.1111/j.1095-8649.2010.02747.x
- Guidelines for the use of fishes in research. 2014. Bethesda: Am. Fish. Soc., 90 p.
- Habeck M., Haviv H., Katz A. et al. 2015. Stimulation, inhibition, or stabilization of Na,K-ATPase caused by specific lipid interactions at distinct sites // J. Biol. Chem. V. 290. № 8. P. 4829–4842. https://doi.org/10.1074/jbc.M114.611384
- Haviv H., Habeck M., Kanai R. et al. 2013. Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction // J. Biol. Chem. V. 288. № 14. P. 10073–10081. https://doi.org/10.1074/jbc.M112.446997
- Hazel J.R., Williams E.E., Livermore R., Mozingo N. 1991. Thermal adaptation in biological membranes: functional significance of changes in phospholipid molecular species composition // Lipids. V. 26. № 4. P. 277–282. https://doi.org/10.1007/BF02537137
- Hwang P.P., Fang M.J., Tsai J.C. et al. 1998. Expression of mRNA and protein of Na+-K+-ATPase α subunit in gills of tilapia (Oreochromis mossambicus) // Fish Physiol. Biochem. V. 18. № 4. P. 363–373. https://doi.org/10.1023/A:1007711606064
- Judd S. 2012. Na+/K+-ATPase isoform regulation in three-spine stickleback (Gasterosteus aculeatus) during salinity acclimation: M.S. Thesis. Chicago: DePaul Univ., 91 p.
- Kahovcová J., Odavić R. 1969. A simple method for the quantitative analysis of phospholipids separated by thin layer chromatography // J. Chromatogr. A. V. 40. P. 90–96. https://doi.org/10.1016/S0021-9673(01)96622-1
- Li H.-O., Yamada J. 1992. Changes of the fatty acid composition in smolts of masu salmon (Oncorhynchus masou), associated with desmoltification and sea-water transfer // Comp. Biochem. Physiol. Pt. A. Physiol. V. 103. № 1. P. 221–226. https://doi.org/10.1016/0300-9629(92)90266-S
- Linga Prabu D., Ebeneezar S., Kalidas C. et al. 2022. Ethics and humane practices of bleeding and euthanasia for experimental marine fishes in fish nutrition research // Mar. Fish. Infor. Serv. T. and E. Ser. № 252. P. 23–25.
- Liu Z.-F., Gao X.-Q., Yu J.-X. et al. 2017. Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima) // Fish Physiol. Biochem. V. 43. № 3. P. 761–773. https://doi.org/10.1007/s10695-016-0330-3
- Madsen S.S., Jensen M.K., Nhr J., Kristiansen K. 1995. Expression of Na(+)-K(+)-ATPase in the brown trout, Salmo trutta: in vivo modulation by hormones and seawater // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 269. № 6. P. R1339–R1345. https://doi.org/10.1152/ajpregu.1995.269.6.R1339
- Madsen S.S., Kiilerich P., Tipsmark C.K. 2009. Multiplicity of expression of Na+,K+-ATPase α-subunit isoforms in the gill of Atlantic salmon (Salmo salar): cellular localisation and absolute quantification in response to salinity change // J. Exp. Biol. V. 212. № 1. P. 78–88. https://doi.org/10.1242/jeb.024612
- Marshall W.S., Grosell M. 2005. Ion transport, osmoregulation, and acid-base balance // The physiology of fishes. Boca Raton: CRC Press. P. 177–230. https://doi.org/10.1201/9781420058093-10
- McCormick S.D. 1995. Hormonal control of gill Na+,K+-ATPase and chloride cell function // Cellular and molecular approaches to fish ionic regulation. San Diego: Acad. Press. P. 285–315. https://doi.org/10.1016/S1546-5098(08)60250-2
- McCormick S.D. 2013. Smolt physiology and endocrinology // Euryhaline fishes. Cambridge, MA: Acad. Press. P. 199–251. https://doi.org/10.1016/B978-0-12-396951-4.00005-0
- McCormick S.D., Saunders R.L. 1987. Preparatory physiological adaptations for marine life of salmonids: osmoregulation, growth, and metabolism // Am. Fish. Soc. Symp. V. 1. P. 211–229.
- McCormick S.D., Regish A., O’Dea M.F., Shrimpton J.M. 2008. Are we missing a mineralocorticoid in teleost fish? Effects of cortisol, deoxycorticosterone and aldosterone on osmoregulation, gill Na+,K+-ATPase activity and isoform mRNA levels in Atlantic salmon // Gen. Comp. Endocrinol. V. 157. № 1. P. 35–40. https://doi.org/10.1016/j.ygcen.2008.03.024
- McCormick S.D., Regish A.M., Christensen A.K. 2009. Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon // J. Exp. Biol. V. 212. № 24. P. 3994–4001. https://doi.org/10.1242/jeb.037275
- Metz J.R., van den Burg E.H., Bonga S.E.W., Flik G. 2003. Regulation of branchial Na+/K+-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures // J. Exp. Biol. V. 206. № 13. P. 2273–2280. https://doi.org/10.1242/jeb.00421
- Mommsen T.P., Vijayan M.M., Moon T.W. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation // Rev. Fish Biol. Fish. V. 9. № 3. P. 211–268. https://doi.org/10.1023/A:1008924418720
- Paulsen T. 2022. Marine growth of introduced pink salmon (Oncorhynchus gorbuscha) caught in northern and central Norway: M.S. Thesis. Tromsø: UiT, 39 p.
- Richards J.G., Semple J.W., Bystriansky J.S., Schulte P.M. 2003. Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer // J. Exp. Biol. V. 206. № 24. P. 4475–4486. https://doi.org/10.1242/jeb.00701
- Sackville M., Wilson J.M., Farrell A.P., Brauner C.J. 2012. Water balance trumps ion balance for early marine survival of juvenile pink salmon (Oncorhynchus gorbuscha) // J. Comp. Physiol. B. V. 182. № 6. P. 781–792. https://doi.org/10.1007/s00360-012-0660-0
- Sandlund O.T., Berntsen H.H., Fiske P. et al. 2019. Pink salmon in Norway: the reluctant invader // Biol. Invasions. V. 21. № 4. P. 1033–1054. https://doi.org/10.1007/s10530-018-1904-z
- Seidelin M., Madsen S.S., Blenstrup H., Tipsmark C.K. 2000. Time-course changes in the expression of Na+,K+-ATPase in gills and pyloric caeca of brown trout (Salmo trutta) during acclimation to seawater // Physiol. Biochem. Zool. V. 73. № 4. P. 446–453. https://doi.org/10.1086/317737
- Singer T.D., Clements K.M., Semple J.W. et al. 2002. Seawater tolerance and gene expression in two strains of Atlantic salmon smolts // Can. J. Fish. Aquat. Sci. V. 59. № 1. P. 125–135. https://doi.org/10.1139/f01-205
- Skou J.C., Esmann M. 1992. The Na,K-atpase // J. Bioenerg. Biomembr. V. 24. № 3. P. 249–261. https://doi.org/10.1007/BF00768846
- Sturm A., Bury N., Dengreville L. et al. 2005. 11-deoxycorticosterone is a potent agonist of the rainbow trout (Oncorhynchus mykiss) mineralocorticoid receptor // Endocrinology. V. 146. № 1. P. 47–55. https://doi.org/10.1210/en.2004-0128
- Takahashi H., Sakamoto T. 2013. The role of ‘mineralocorticoids’ in teleost fish: relative importance of glucocorticoid signaling in the osmoregulation and ‘central’ actions of mineralocorticoid receptor // Gen. Comp. Endocrinol. V. 181. P. 223–228. https://doi.org/10.1016/j.ygcen.2012.11.016
- Thorpe J.E. 1994. Salmonid fishes and the estuarine environment // Estuaries. V. 17. № 1. P. 76–93. https://doi.org/10.2307/1352336
- Tipsmark C.K., Madsen S.S., Seidelin M. et al. 2002. Dynamics of Na+,K+,2Cl− cotransporter and Na+,K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) // J. Exp. Zool. V. 293. № 2. P. 106–118. https://doi.org/10.1002/jez.10118
- Towle D.W., Gilman M.E., Hempel J.D. 1977. Rapid modulation of gill Na+ + K+-dependent ATPase activity during acclimation of the killifish Fundulus heteroclitus to salinity change // J. Exp. Zool. V. 202. № 2. P. 179–185. https://doi.org/10.1002/jez.1402020206
- Varsamos S., Nebel C., Charmantier G. 2005. Ontogeny of osmoregulation in postembryonic fish: a review // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 141. № 4. P. 401–429. https://doi.org/10.1016/j.cbpb.2005.01.013
- Ventrella V., Pagliarani A., Pirini M. et al. 1993. Lipid composition and microsomal ATPase activities in gills and kidneys of warm- and cold-acclimated sea bass (Dicentrarchus labrax L.) // Fish Physiol. Biochem. V. 12. № 4. P. 293–304. https://doi.org/10.1007/BF00004414
Қосымша файлдар

