Polyunsaturated Fatty Acid Content in the Muscles of Alien Fish Species of the Rybinsk Reservoir

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The biochemical composition of the muscles of two fish species, European smelt Osmerus eperlanus and the Common (Caspian) kilka Clupeonella cultriventris, that were successively invaded and naturalized in the Rybinsk Reservoir in the second half of the 20th century, differs significantly in the fatty acid content. The sum content (mg/g) of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) polyunsaturated fatty acids in the muscle tissue of the kilka is almost four times higher than that in European smelt. Given that smelt and the kilka are similar in their ecological and morphological characteristics and do not differ significantly in the composition of their diet in the Rybinsk Reservoir, it is obvious that the observed differences primarily result from the phylogenetic aspect. The obtained data on the composition of the fatty acids of the invaders show that the replacement of one alien species with another (European smelt with the kilka) significantly changed the quality of production of an important link in the trophic web of the reservoir.

About the authors

Yu. Yu. Dgebuadze

Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia

Email: yudgeb@yandex.ru
Россия, Москва; Россия, Москва

N. N. Sushchik

Institute of Biophysics, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia

Email: yudgeb@yandex.ru
Россия, Красноярск; Россия, Красноярск

Yu. V. Gerasimov

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia

Email: yudgeb@yandex.ru
Россия, Ярославская область, пос. Борок

Yu. I. Solomatin

Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia

Email: yudgeb@yandex.ru
Россия, Ярославская область, пос. Борок

M. I. Gladyshev

Institute of Biophysics, Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia; Siberian Federal University, Krasnoyarsk, Russia

Author for correspondence.
Email: yudgeb@yandex.ru
Россия, Красноярск; Россия, Красноярск

References

  1. Герасимов Ю.В., Карабанов Д.П. 2015. Черноморско-каспийская тюлька // Рыбы Рыбинского водохранилища: популяционная динамика и экология. Ярославль: Филигрань. С. 146–156.
  2. Герасимов Ю.В., Иванова М.Н. 2015. Корюшка // Рыбы Рыбинского водохранилища: популяционная динамика и экология. Ярославль: Филигрань. С. 169–183.
  3. Гладышев М.И. 2018. Качество и количество добываемой биологической продукции водоёмов при разной концентрации фосфора // ДАН. Т. 478. № 1. С. 100–102. https://doi.org/10.7868/S0869565218010206
  4. Гладышев М.И. 2021. Наземные источники полиненасыщенных жирных кислот для аквакультуры // Вопр. ихтиологии. Т. 61. № 4. С. 471–485. https://doi.org/10.31857/S0042875221030048
  5. Иванова М.Н. 1982. Популяционная изменчивость пресноводных корюшек. Рыбинск: Изд-во ИБВВ АН СССР, 145 с.
  6. Кияшко В.И., Карабанов Д.П., Яковлев В.Н., Слынько Ю.В. 2012. Становление и развитие популяции черноморско-каспийской тюльки Clupeonella cultriventris (Clupeidae) в Рыбинском водохранилище // Вопр. ихтиологии. Т. 52. № 5. С. 571–580.
  7. Кудерский Л.А. 1974. О путях развития рыбного хозяйства на внутренних водоемах (озера, водохранилища, реки) // Изв. ГосНИОРХ. Т. 87. С. 94–120.
  8. Лазарева В.И., Соколова Е.А. 2015. Метазоопланктон равнинного водохранилища в период потепления климата: биомасса и продукция // Биология внутр. вод. № 3. С. 30–38. https://doi.org/10.7868/S0320965215030092
  9. Махутова О.Н., Пряничникова Е.Г., Гладышев М.И., Сущик Н.Н. 2008. Сезонная динамика спектра питания Dreissena polymorpha (Pallas, 1771) в Рыбинском водохранилище // ДАН. Т. 423. № 5. С. 710–713.
  10. Поддубный А.Г. 1971. Экологическая топография популяций рыб в водохранилищах. Л.: Наука, 312 с.
  11. Попов П.А. 2012. Характеристика ихтиоценозов водохранилищ Сибири // География и природные ресурсы. № 3. С. 77–84.
  12. Слынько Ю.В., Кияшко В.И. 2012. Анализ эффективности инвазий пелагических видов рыб в водохранилищах Волги // Рос. журн. биол. инвазий. № 1. С. 73–87.
  13. Слынько Ю.В., Дгебуадзе Ю.Ю., Новицкий Р.А., Христов О.А. 2010. Инвазии чужеродных рыб в бассейнах крупнейших рек понто-каспийского бассейна: состав, векторы, инвазионные пути и темпы // Рос. журн. биол. инвазий. № 4. С. 74–89.
  14. Яковлев В.Н., Слынько Ю.В., Кияшко В.И. 2001. Аннотированный каталог круглоротых и рыб водоемов бассейна Верхней Волги // Экологические проблемы Верхней Волги. Ярославль: Изд-во ЯГТУ. С. 52–69.
  15. Adkins Y., Kelley D.S. 2010. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids // J. Nutr. Biochem. V. 21. № 9. P. 781–792. https://doi.org/10.1016/j.jnutbio.2009.12.004
  16. Ahlgren G., Gustafsson I.B., Boberg M. 1992. Fatty acid content and chemical composition of freshwater microalgae // J. Phycol. V. 28. № 1. P. 37–50. https://doi.org/10.1111/j.0022-3646.1992.00037.x
  17. Ahlgren G., Sonesten L., Boberg M., Gustafsson I.-B. 1996. Fatty acid content of some freshwater fish in lakes of different trophic levels – a bottom-up effect? // Ecol. Freshw. Fish. V. 5. № 1. P. 15–27. https://doi.org/10.1111/j.1600-0633.1996.tb00033.x
  18. Ahlgren G., Vrede T., Goedkoop W. 2009. Lipids in Aquatic Ecosystems. N.Y.: Springer. P. 147–178. https://doi.org/10.1007/978-0-387-89366-2_7
  19. Bernasconi A.A., Wiest M.M., Lavie C.J. et al. 2021. Effect of omega-3 dosage on cardiovascular outcomes: an updated meta-analysis and meta-regression of interventional trials // Mayo Clin. Proc. V. 96. № 2. P. 304–313. https://doi.org/10.1016/j.mayocp.2020.08.034
  20. Calder P.C. 2018. Very long-chain n-3 fatty acids and human health: fact, fiction and the future // Proc. Nutr. Soc. V. 77. № 1. P. 52–72. https://doi.org/10.1017/S0029665117003950
  21. Casula M., Soranna D., Catapano A.L., Corrao G. 2013. Long-term effect of high dose omega-3 fatty acid supplementation for secondary prevention of cardiovascular outcomes: A meta-analysis of randomized, double blind, placebo controlled trials // Atheroscler. Suppl. V. 14. № 2. P. 243–251. https://doi.org/10.1016/S1567-5688(13)70005-9
  22. Cladis D.P., Kleiner A.C., Freiser H.H., Santerre C.R. 2014. Fatty acid profiles of commercially available finfish fillets in the United States // Lipids. V. 49. № 10. P. 1005–1018. https://doi.org/10.1007/s11745-014-3932-5
  23. Crooks J.A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers // Oikos. V. 97. № 2. P. 153–166. https://doi.org/10.1034/j.1600-0706.2002.970201.x
  24. Desvilettes C., Bourdier G., Amblard C., Barth B. 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae // Freshwat. Biol. V. 38. № 3. P. 629–637. https://doi.org/10.1046/j.1365-2427.1997.00241.x
  25. Dgebuadze Yu.Yu., Kiyashko V.I., Osipov V.V. 2008. Life-history variation in invasive populations of Caspian Kilka, Clupeonella cultriventris (Clupeidae, Pisces) in the Volga River Basin // Neobiota. V. 7. P. 153–159.
  26. Dijkman N.A., Kromkamp J.C. 2006. Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: Application for inferring phytoplankton composition // Mar. Ecol. Prog. Ser. V. 324. P. 113–125. https://doi.org/10.3354/meps324113
  27. Fernando C.H., Holčíck J. 1982. The nature of fish communities: a factor influencing the fishery potential and yield of tropical lakes and reservoirs // Hydrobiologia. V. 97. № 2. P. 127–140. https://doi.org/10.1007/BF00011966
  28. Gladyshev M.I., Sushchik N.N. 2019. Long-chain omega-3 polyunsaturated fatty acids in natural ecosystems and the human diet: assumptions and challenges // Biomolecules. V. 9. № 9. P. 485. https://doi.org/10.3390/biom9090485
  29. Gladyshev M.I., Sushchik N.N., Gubanenko G.A. et al. 2007. Effect of boiling and frying on the content of essential polyunsaturated fatty acids in muscle tissue of four fish species // Food Chem. V. 101. № 4. P. 1694–1700. https://doi.org/10.1016/j.foodchem.2006.04.029
  30. Gladyshev M.I., Sushchik N.N., Makhutova O.N. 2013. Production of EPA and DHA in aquatic ecosystems and their transfer to the land // Prostaglandins Other Lipid Mediat. V. 107. P. 117–126. https://doi.org/10.1016/j.prostaglandins.2013.03.002
  31. Gladyshev M.I., Kolmakova O.V., Tolomeev A.P. et al. 2015a. Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? // Limnol. Oceanogr. V. 60. № 4. P. 1314–1331. https://doi.org/10.1002/lno.10097
  32. Gladyshev M.I., Makhutova O.N., Gubanenko G.A. et al. 2015b. Livers of terrestrial production animals as a source of long-chain polyunsaturated fatty acids for humans: an alternative to fish? // Eur. J. Lipid Sci. Technol. V. 117. № 9. P. 1417–1421. https://doi.org/10.1002/ejlt.201400449
  33. Gladyshev M.I., Sushchik N.N., Tolomeev A.P., Dgebuadze Yu.Yu. 2018. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish // Rev. Fish Biol. Fish. V. 28. № 2. P. 277–299. https://doi.org/10.1007/s11160-017-9511-0
  34. Gladyshev M.I., Anishchenko O.V., Makhutova O.N. et al. 2020. The benefit-risk analysis of omega-3 polyunsaturated fatty acids and heavy metals in seven smoked fish species from Siberia // J. Food Compos. Anal. V. 90. Article 103489. https://doi.org/10.1016/j.jfca.2020.103489
  35. Gribben P.E., Byers J. E., Wright J.T., Glasby T.M. 2013. Positive versus negative effects of an invasive ecosystem engineer on different components of a marine ecosystem // Oikos. V. 122. № 6. P. 816–824. https://doi.org/10.1111/j.1600-0706.2012.20868.x
  36. Harris W.S., Mozaffarian D., Lefevre M. et al. 2009. Towards establishing dietary reference intakes for eicosapentaenoic and docosahexaenoic acids // J. Nutr. V. 139. № 4. P. 804S–819S. https://doi.org/10.3945/jn.108.101329
  37. Huynh M.D., Kitts D.D. 2009. Evaluating nutritional quality of pacific fish species from fatty acid signatures // Food Chem. V. 114. № 3. P. 912–918. https://doi.org/10.1016/j.foodchem.2008.10.038
  38. Kris-Etherton P.M., Grieger J.A., Etherton T.D. 2009. Dietary reference intakes for DHA and EPA // Prostaglandins Leukot. Essent. Fatty Acids. V. 81. № 2–3. P. 99–104. https://doi.org/10.1016/j.plefa.2009.05.011
  39. Kwetegyeka J., Mpango G., Grahl-Nielsen O. 2008. Variation in fatty acid composition in muscle and heart tissues among species and populations of tropical fish in lakes Victoria and Kyoga // Lipids. V. 43. № 11. P. 1017–1029. https://doi.org/10.1007/s11745-008-3200-7
  40. Legendre P., Legendre L. 1998. Numerical Ecology. Amsterdam: Elsevier Science, 853 p.
  41. McKenzie D.J., Higgs D.A., Dosanjh B.S. et al. 1998. Dietary fatty acid composition influences swimming performance in Atlantic salmon (Salmo salar) in seawater // Fish Physiol. Biochem. V. 19. № 2. P. 111–122. https://doi.org/10.1023/A:1007779619087
  42. McNamara R.K., Carlson S.E. 2006. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology // Prostaglandins Leukot. Essent. Fatty Acids. V. 75. № 4–5. P. 329–349. https://doi.org/10.1016/j.plefa.2006.07.010
  43. Nagasaka R., Gagnon C., Swist E. et al. 2014. EPA and DHA status of South Asian and white Canadians living in the National Capital Region of Canada // Lipids. V. 49. № 10. P. 1057–1069. https://doi.org/10.1007/s11745-014-3942-3
  44. Norris P.C., Dennis E.A. 2012. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling // Proc. Natl. Acad. Sci. USA. V. 109. № 22. P. 8517–8522. https://doi.org/10.1073/pnas.1200189109
  45. Phang M., Lazarus S., Wood L.G., Garg M. 2011. Diet and thrombosis risk: nutrients for prevention of thrombotic disease // Semin. Thromb. Hemost. V. 37. № 3. P. 199–208. https://doi.org/10.1055/s-0031-1273084
  46. Plourde M., Cunane S.C. 2007. Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements // Appl. Physiol. Nutr. Metab. V. 32. № 4. P. 619–634. https://doi.org/10.1139/H07-034
  47. Rodriguez L.F. 2006. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur // Biol. Invasions. V. 8. № 4. P. 927–939. https://doi.org/10.1007/s10530-005-5103-3
  48. Robert S.S. 2006. Production of eicosapentaenoic and docosahexaenoic acid-containing oils in transgenic land plants for human and aquaculture nutrition // Mar. Biotechnol. V. 8. № 2. P. 103–109. https://doi.org/10.1007/s10126-005-5142-x
  49. SanGiovanni J.P., Chew E.Y. 2005. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina // Prog. Retin. Eye Res. V. 24. № 1. P. 87–138. https://doi.org/10.1016/j.preteyeres.2004.06.002
  50. Slynko Y.V., Korneva L.G., Rivier I.K. et al. 2002. The Caspian-Volga-Baltic invasion corridor // Invasive aquatic species of Europe. Distribution, impacts and management. Dordrecht: Springer. P. 399–411. https://doi.org/10.1007/978-94-015-9956-6_40
  51. Tacon A.G.J., Metian M. 2013. Fish matters: importance of aquatic foods in human nutrition and global food supply // Rev. Fish. Sci. V. 21. № 1. P. 22–38. https://doi.org/10.1080/10641262.2012.753405
  52. Taipale S.J., Vuorioc K., Strandberg U. et al. 2016. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption // Environ. Int. V. 96. P. 156–166. https://doi.org/10.1016/j.envint.2016.08.018
  53. Tassin J., Kull C.A. 2015. Facing the broader dimensions of biological invasions // Land Use Policy. V. 42. P. 165–169. https://doi.org/10.1016/j.landusepol.2014.07.014
  54. Tocher D.R. 2003. Metabolism and functions of lipids and fatty acids in teleost fish // Rev. Fish. Sci. V. 11. № 2. P. 107–184. https://doi.org/10.1080/713610925
  55. Tocher D.R., Betancor M.B., Sprague M. et al. 2019. Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand // Nutrients. V. 11. № 1. P. 89. https://doi.org/10.3390/nu11010089
  56. Vasconi M., Caprino F., Bellagamba F. et al. 2015. Fatty acid composition of freshwater wild fish in subalpine lakes: a comparative study // Lipids. V. 50. № 3. P. 283–302. https://doi.org/10.1007/s11745-014-3978-4
  57. Wall R., Ross R.P., Fitzgerald G.F., Stanton C. 2010. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids // Nutr. Rev. V. 68. № 5. P. 280–289. https://doi.org/10.1111/j.1753-4887.2010.00287.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2KB)
3.

Download (139KB)
4.

Download (63KB)
5.

Download (25KB)

Copyright (c) 2023 Ю.Ю. Дгебуадзе, Н.Н. Сущик, Ю.В. Герасимов, Ю.И. Соломатин, М.И. Гладышев

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies