Стереотаксическое исследование функций головного мозга: альтернативные подходы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматриваются возможности различных способов определения локализации малоразмерных клеточных образований мозга у животных. Показаны преимущества электрофизиологического подхода, используемого при локализации тестируемых ядерных структур мозга, их селективного повреждения и последующей гистологической верификации места и размера повреждения мозговой ткани. Предложены методические рекомендации, которые обеспечивают более точное определение координат тестируемых структур мозга, что приводит к значительному сокращению времени на проведение запланированных исследований и затрат на их выполнение за счет отсутствия необходимости включения в эксперимент большого количества подопытных животных.

Об авторах

С. В. Альбертин

Институт физиологии им. И.П. Павлова РАН

Автор, ответственный за переписку.
Email: albertinsv@infran.ru
Россия, Санкт-Петербург

Список литературы

  1. Альбертин С.В. Способ моделирования патологии проводящих путей гиппокампа // Бюл. изобр. 2005. № 23 (2 ч.). С. 415. Патент РФ № 2258961.
  2. Альбертин С.В. Этика физиологического эксперимента // Успехи физиол. наук. 2014. Т. 45. № 4. С. 99–110.
  3. Альбертин С.В., Винер С.И. Нейрональная активность прилежащего ядра и гиппокампа у крыс при формировании поискового поведения в радиальном лабиринте // Бюл. экспер. биол. мед. 2014. Т. 158. № 10. С. 400–405.
  4. Альтман Я.А., Марусева А.М. Методика отведения потенциалов от различных отделов слуховой системы кошки в хронических условиях эксперимента // Физиол. журн. СССР им. И.М. Сеченова. 1959. Т. 45. № 6. С. 724–729.
  5. Мещерский Р.М. Стереотаксический метод. Применение в эксперименте и клинике. М.: Медгиз, 1961. 203 с.
  6. Albertin S.V., Wiener S.I. Neuronal activity in the nucleus accumbens and hippocampus in rats during formation of seeking behavior in a radial maze // Bull. Exp. Biol. Med. 2015. V. 158 (4). P. 405–409.
  7. Beijer A.V.J., Witter M.P., Groenewegen H.J. Relationships of hippocampal and amygdaloid inputs to the nucleus accumbens with outputs to the mesencephalic locomotor region in the rat // Eur. J. Neurosci. 1994. Suppl. 7. P. 209.
  8. Bowman E.M., Brown V.J. Effects of excitotoxic lesions of the rat ventral striatum on the perception of reward cost // Exp. Brain Res. 1998. V. 123. № 4. P. 439–448.
  9. Duan W., Zhang Y.P., Hou Z. et al. Novel insight into NeuN: from neuronal marker to splicing regulator // Mol. Neurobiol. 2016. V. 53 (3). P. 1637–1647.
  10. Freeman W.J. Distribution in time and space of prepyriform electrical activity // J. Neurophysiol. 1959. V. 22. P. 644–665.
  11. Groenewegen H.J., Mulder A.B., Beijer A.V.J. et al. Hippocampal and amygdaloid interaction in the nucleus accumbens // Psychobiology. 1999. V. 27. P. 149–164.
  12. Guselnikova V.V., Korzhevskiy D.E. NeuN as a neuronal nuclear antigen and neuron differentiation marker // Acta Naturae. 2015. V. 7 (2). P. 42–47.
  13. Jasper H.H., Ajmone-Marsan C.A. Stereotaxic atlas of the diencephalon of the cat. Ottava: National Research Council of Canada, 1954. 242 p.
  14. Jongen-Relo A., Voorn P., Groenewegen H.J. Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat // Eur. J. Neurosci. 1994. V. 6. № 8. P. 1255–1264.
  15. Kodsi M.H., Swerdlow N.R. Reduced prepulse inhibition after electrolytic lesions of nucleus accumbens subregions in the rat // Brain Res. 1997. V. 773. № 1–2. P. 45–52.
  16. Li Z., Zhang J.-G., Ye Y., Li X. Review on factors affecting targeting accuracy of deep brain stimulation electrode implantation between 2001 and 2015 // Stereotact. Funct. Neurosurg. 2016. V. 94 (6). P. 351–362.
  17. Liu H., Zhou J., Tian W. et al. DNA methilation atlas of the mouse brain at single-cell resolution // Nature. 2021. V. 598 (7879). P. 120–128.
  18. Miyamoto M., Saji Y., Nagawa Y. Behavioral changes following lesioning of the nucleus accumbens (ACB) and effects of centrally acting drugs in rats // Nippon Yakurigaku Zassni. Fol. Pharmacol. Jpn. 1980. V. 76. P. 227–238.
  19. Mulder A.B. Interaction of inputs and synaptic plasticity in the nucleus accumbens. An in vivo electrophysiological study in the rat. PhD thesis. Amsterdam, 1996.
  20. Mullen R.J., Buck C.R., Smith A.M. NeuN, a neuronal specific nuclear protein in vertebrates // Development. 1992. V. 116. № 1. P. 201–211.
  21. Parkinson J.A., Olmstead M.C., Burns L.H. et al. Dissociations in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine // J. Neurosci. 1999. V. 19. № 6. P. 2401–2411.
  22. Paxinos G., Watson C. The rat brain in stereotaxic coordinates. 7rd ed. San Diego: Academic Press, 2013. 480 p.
  23. Pellegrino L.J., Pellegrino A.S., Cushman A.J. A stereotaxic atlas of the rat brain. 2nd ed. N.Y., L.: Plenum press, 1979. 23 p.
  24. Seamans J.K., Fillips A.G. Selective memory impairments produced by transient lidocaine-induced lesion of nucleus accumbens in rats // Behav. Neurosci. 1994. V. 108. P. 456–468.
  25. Sedrak M., Alaminos-Bouza A.L., Srivastava S. Coordinate systems for navigating stereotactic space: how not to get lost // Cureus. 2020. V. 12 (6). P. e8578. https://doi.org:10.7759/cureus.8578
  26. Sutherland R.J., Rodriguez A.J. The role of the fornix/fimbria and some related subcortical structures in place learning and memory // Behav. Brain Res. 1989. V. 32. P. 265–277.
  27. Wang Q., Ding S.-L., Li Y. et al. The allen mouse brain common coordinate framework: a 3D reference atlas // Cell. 2020. V. 181 (4). P. 936–953.
  28. Wiener S.I., Shibata R., Tabuchi E. et al. Spatial and behavioral correlates in nucleus accumbens neurons in zones receiving hippocampal or prefrontal cortical inputs // Int. Congr. Ser. 2003. V. 1250. P. 275–292.
  29. Zahm D.S., Brog J.S. On the significance of subterritories in the “accumbens” part of the rat ventral striatum // Neuroscience. 1992. V. 50. № 4. P. 751–767.
  30. Zahm D.S., Heimer L. The efferent projections of the rostral pole of the nucleus accumbens in the rat: comparison of the rostral pole projection patterns with those of the core and shell // J. Comp. Neurol. 1993. V. 327. № 2. P. 220–232.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (551KB)
3.

Скачать (247KB)

© С.В. Альбертин, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах