On the Biological Role of Histone Acetylation/Deacetylation in the Process of Plant Germination

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The transition of embryos in air-dry seeds from a state of dormancy to a state with a highly active metabolism during germination is accompanied by significant changes in both spatial and temporal patterns of gene expression and is controlled by multilevel regulatory networks. The character and degree of acetylation of chromatin proteins depend on the transcriptional activity of chromatin, and are also associated with DNA replication and the cell cycle. Obtaining a complete picture of the involvement of histone modification in seed germination in the future will be useful for increasing crop yields, as a way to assess the quality and viability of seeds before sowing, and will also allow the development of methods for managing the realization of plant genetic potential.

About the authors

G. H. Vafina

Ufa Institute of Biology – Subdivision of the Ufa Federal
Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: vafinagh@mail.ru
Russia, Ufa

E. E. Stupak

Ufa Institute of Biology – Subdivision of the Ufa Federal
Research Centre of the Russian Academy of Sciences

Email: vafinagh@mail.ru
Russia, Ufa

References

  1. Данович К.Н., Соболев А.М., Жданова Л.П. и др. Физиология семян. М.: Наука, 1982. 318 с.
  2. Alinsug M.V., Chen F.F., Luo M. et al. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light // PLoS One. 2012. V. 7 (2). P. e30846.
  3. Azad G.K., Swagatika S., Kumawat M. et al. Modifying chromatin by histone tail clipping // J. Mol. Biol. 2018. V. 430 (18). P. 3051–3067.
  4. Boycheva I., Vassileva V., Iantcheva A. Histone acetyltransferases in plant development and plasticity // Curr. Genom. 2014. V. 15 (1). P. 28–37.
  5. Brownell J.E., Allis C.D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation // Curr. Opin. Genet. Dev. 1996. V. 6 (2). P. 176–184.
  6. Carrera-Castaño G., Calleja-Cabrera J., Pernas M. et al. An updated overview on the regulation of seed germination // Plants. 2020. V. 9 (6). P. 703.
  7. Chen Z.J., Tian L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy // Biochim. Biophys. Acta. 2007. V. 1769 (5–6). P. 295–307.
  8. Chen W. Q., Li D. X., Zhao F. et al. One additional histone deacetylase and 2 histone acetyltransferases are involved in cellular patterning of Arabidopsis root epidermis // Plant Signal. Behav. 2016. V. 11. P. e1131373.
  9. Chhun T., Chong S.Y., Park B.S. et al. HSI2 repressor recruits MED13 and HDA6 to down-regulate seed maturation gene expression directly during Arabidopsis early seedling growth // Plant Cell Physiol. 2016. V. 57. P. 1689–1706.
  10. Cimini D., Mattiuzzo M., Torosantucci L., Degrassi F. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects // Mol. Biol. Cell. 2003. V. 14 (9). P. 3821–3833.
  11. Davie J.R. Inhibition of histone deacetylase activity by butyrate // J. Nutr. 2003. V. 133 (7). P. 2485S–2493S.
  12. Dokmanovic M., Marks P.A. Prospects: histone deacetylase inhibitors // J. Cell. Biochem. 2005. V. 96 (2). P. 293–304.
  13. Du Z., Li H., Wei Q. et al. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica // Mol. Plant. 2013. V. 6 (5). P. 1463–1472.
  14. Feitoza L., Costa L., Guerra M. Condensation patterns of prophase/prometaphase chromosome are correlated with H4K5 histone acetylation and genomic DNA contents in plants // PLoS One. 2017. V. 12 (8). P. e0183341.
  15. Fina J.P., Masotti F., Rius S.P. et al. HAC1 and HAF1 histone acetyltransferases have different roles in UV-B responses in Arabidopsis // Front. Plant Sci. 2017. V. 8. P. 1179.
  16. Fuchs J., Demidov D., Houben A., Schubert I. Chromosomal histone modification patterns – from conservation to diversity // Trends Plant Sci. 2006. V. 11. P. 199–208.
  17. Gan L., Wei Z., Yang Z. et al. Updated mechanisms of GCN5 – the monkey king of the plant kingdom in plant development and resistance to abiotic stresses // Cells. 2021. V. 10 (5). P. 979.
  18. Garcia-Ramirez M., Rocchini C., Ausio J. Modulation of chromatin folding by histone acetylation // J. Biol. Chem. 1995. V. 270 (30). P. 17923–17928.
  19. Gong F., Chiu L.Y., Miller K.M. Signaling to genome maintenance and cancer // PLoS Genet. 2016. V. 12 (9). P. e1006272.
  20. Haigney A., Ricketts M.D., Marmorstein R. Dissecting the molecular roles of histone chaperones in histone acetylation by type B histone acetyltransferases (HAT–B) // J. Biol. Chem. 2015. V. 290 (51). P. 30648–30657.
  21. Hartl M., Fussl M., Boersema P.J. et al. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis // Mol. Syst. Biol. 2017. V. 13 (10). P. 949.
  22. Hollender C., Liu Z. Histone deacetylase genes in Arabidopsis development // J. Integr. Plant Biol. 2008. V. 50. P. 875–885.
  23. Hong L., Schroth G.P., Matthews H.P. et al. Studies of the DNA binding properties of histone H4 amino terminus // J. Biol. Chem. 1993. V. 268 (1). P. 305–314.
  24. Hou H., Wang P., Zhang H. et al. Histone acetylation is involved in gibberellin-regulated sodCp gene expression in maize aleurone layers // Plant Cell Phys. 2015. V. 56 (11). P. 2139–2149.
  25. Hu Y., Lu Y., Zhao Y., Zhou D.X. Histone acetylation dynamics integrates metabolic activity to regulate plant response to stress // Front. Plant Sci. 2019. V. 10. P. 1236.
  26. Ivanov V.B., Dobrochaev A.E., Baskin T.I. What the distribution of cell lengths in the root meristem does and does not reveal about cell division // J. Plant Growth Reg. 2002. V. 21 (1). P. 60–67.
  27. Jasencakova Z., Meister A., Walter J. et al. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription // Plant Cell. 2000. V. 12. P. 2087–2100.
  28. Jasencakova Z., Meister A., Schubert I. Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley // Chromosoma. 2001. V. 110 (2). P. 83–92.
  29. Kim S., Sophie J.M., Piquerez J.S. et al. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes // Nucl. Acids Res. 2020. V. 48 (11). P. 5953–5966.
  30. Kolle D., Sarg B., Lindner H., Loidl P. Substrate and sequential site specificity of cytoplasmic histone acetyltransferases of maize and rat liver // FEBS Lett. 1998. V. 421 (2). P. 109–114.
  31. Kouzarides T. Chromatin modifications and their function // Cell. 2007. V. 128 (4). P. 693–705.
  32. Kumar V., Thakur J.K., Prasad M. Histone acetylation dynamics regulating plant development and stress responses // Cell. Mol. Life Sci. 2021. V. 78 (10). P. 4467–4486.
  33. Lechner T., Lusser A., Pipal A. et al. RPD3-type histone deacetylases in maize embryos // Biochemistry. 2000. V. 39 (7). P. 1683–1692.
  34. Lee D.Y., Hayes J.J., Pruss D., Wolffe A.P. et al. A positive role for histone acetylation in transcription factor access to nucleosomal DNA // Cell. 1993. V. 72 (1). P. 73–84.
  35. Li H., Torres-Garcia J., Latrasse D. et al. Plant-specific histone deacetylases HDT1/2 regulate GIBBERELLIN 2–OXIDASE2 expression to control Arabidopsis root meristem cell number // Plant Cell. 2017. V. 29 (9). P. 2183–2196.
  36. Li Y., Butenko Y., Grafi G. Histone deacetylation is required for progression through mitosis in tobacco cells // Plant J. 2005. V. 41 (3). P. 346–352.
  37. Liu C., Lu F., Cui X., Cao X. Histone methylation in higher plants // Annu. Rev. Plant Biol. 2010. V. 61. P. 395–420.
  38. Liu X., Chen C.-Y., Wang K.-C. et al. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings // Plant Cell. 2013. V. 25 (4). P. 1258–1273.
  39. Liu X., Yang S., Yu C.W. et al. Histone acetylation and plant development // Enzymes. V. 40. / Eds C. Lin, Sh. Luan. Burlington: Academic Press, 2016. P. 173–199.
  40. Loidl P. Towards an understanding of the biological function of histone acetylation // FEBS Lett. 1988. V. 227 (2). P. 91–95.
  41. Loidl P. Histone acetylation: facts and questions // Chromosoma. 1994. V. 103 (7). P. 441–449.
  42. Lu L., Chen X., Sanders D. et al. High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice // Epigenetics. 2015. V. 10 (11). P. 1044–1053.
  43. Luján-Soto E.V., Dinkova T.D. Time to wake up: epigenetic and small-RNA-mediated regulation during seed germination // Plants. 2021. V. 10 (2). P. 236.
  44. Mahrez W., Arellano M.S., Moreno-Romero J. et al. H3K36ac is an evolutionary conserved plant histone modification that marks active genes // Plant Physiol. 2016. V. 170 (3). P. 1566–1577.
  45. Mandal P., Verma N., Azad G.K. et al. Epigenetics: role of histone proteases in cellular functions and diseases // Molecular mechanisms and physiology of disease: implications for epigenetics and health / Eds N. Maulik, T. Karagiannis. N.Y.: Springer Science+Business Media, 2014. P. 113–125.
  46. Mariño-Ramírez L., Kann M.G., Shoemaker B.A., Landsman D. Histone structure and nucleosome stability // Exp. Rev. Proteom. 2005. V. 2 (5). P. 719–729.
  47. Martin B.J.E., Brind’Amour J., Kuzmin A. et al. Transcription shapes genome-wide histone acetylation patterns // Nat. Commun. 2021. V. 12 (1). P. 210.
  48. Martínez Ó., Arjones V., González M.V. Histone deacetylase inhibitors increase the embryogenic potential and alter the expression of embryogenesis-related and HDAC-encoding genes in grapevine (Vitis vinifera L., cv. Mencía) // Plants. 2021. V. 10 (6). P. 1164.
  49. Musselman C.A., Lalonde M.E., Côté J., Kutateladze T.G. Perceiving the epigenetic landscape through histone readers // Nat. Struct. Mol. Biol. 2012. V. 19 (12). P. 1218–1227.
  50. Nguyen H.N., Kim J.H., Jeong C.Y. et al. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation // Plant Cell Rep. 2013. V. 32 (10). P. 1625–1636.
  51. Nieuwland J., Stamm P., Wen B. et al. Re-induction of the cell cycle in the Arabidopsis post-embryonic root meristem is ABA-insensitive, GA-dependent and repressed by KRP6 // Sci. Rep. 2016. V. 6. P. 23586.
  52. Nonogaki H. Seed dormancy and germination-emerging mechanisms and new hypotheses // Front. Plant Sci. 2014. V. 5. P. 233.
  53. Nonogaki H., Bassel G.W., Bewley J.D. Germination – still a mystery // Plant Sci. 2010. V. 179 (6). P. 574–581.
  54. Pandey R., Müller A., Napoli C.A. et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes // Nucl. Acids Res. 2002. V. 30 (23). P. 5036–5055.
  55. Parthun M.R., Widom J., Gottschling D.E. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism // Cell. 1996. V. 87 (1). P. 85–94.
  56. Roth S.Y., Denu J.M., Allis C.D. Histone acetyltransferases // Annu. Rev. Biochem. 2001. V. 70. P. 81–120.
  57. Sadoul K., Boyault C., Pabion M., Khochbin S. Regulation of protein turnover by acetyltransferases and deacetylases // Biochimie. 2008. V. 90. P. 306–312.
  58. Servet C., Conde e Silva N., Zhou D.-X. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis // Mol. Plant. 2010. V. 3 (4). P. 670–677.
  59. Smolikova G., Strygina K., Krylova E. et al. Transition from seeds to seedlings: hormonal and epigenetic aspects // Plants. 2021. V. 10 (9). P. 1884.
  60. Spencer V.A., Davie J.R. Role of covalent modifications of histones on regulating gene expression // Gene. 1999. V. 240 (1). P. 1–12.
  61. Tanaka M., Kikuchi A., Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination // Plant Phys. 2008. V. 146 (1). P. 149–161.
  62. Vafina G.H., Ivanov R.S. Localization of Arg-X proteolysis in the supramolecular structures of cell nuclei during the induction of growth in mature wheat germs // Indian J. Plant Physiol. 2016. V. 21 (3). P. 370–373.
  63. Vafina G.H., Ivanov R.S., Ivanova E.A. Analysis of Arg-X proteolytic activity in the supramolecular structures of cell nuclei influenced by inhibitor deacetylation of proteins during the germination of wheat // Indian J. Plant Physiol. 2017. V. (3). P. 358–364.
  64. Vafina G.H., Ivanov R.S., Ivanova E.A. Changes of Arg-X proteolysis localization under conditions of deacetylation inhibition of nuclear proteins in spring and winter wheat seedlings // Acta Physiol. Plant. 2018. V. 40. P. 78.
  65. Vafina G.H., Ivanov R.S., Kalashnik N. Features of the formation of Arg-X proteolytic system of cellular nuclei during germination of wheat seeds // Bulg. J. Agric. Sci. 2020. V. 26 (6). P. 1158–1165. https://www.agrojournal.org/26/06–08.html.
  66. Vettese-Dadey M., Grant P.A., Hebbes T.R. et al. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro // EMBO J. 1996. V. 15 (10). P. 2508–2518.
  67. Wako T., Fukuda M., Furushima-Shimogawara R. et al. Cell cycle-dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley // Plant Mol. Biol. 2002. V. 49 (6). P. 645–653.
  68. Wang Z., Cao H., Sun Y. et al. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation // Plant Cell. 2013. V. 25 (1). P. 149–166.
  69. Wang Z., Chen F., Li X. et al. Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1 // Nat. Commun. 2016. V. 7. P. 13412.
  70. Wolny E., Braszewska-Zalewska A., Kroczek D., Hasterok R. Histone H3 and H4 acetylation patterns are more dynamic than those of DNA methylation in Brachypodium distachyon embryos during seed maturation and germination // Protoplasma. 2017. V. 254. P. 2045–2052.
  71. Xu Q., Liu Q., Chen Z. et al. Histone deacetylases control lysine acetylation of ribosomal proteins in rice // Nucl. Acids Res. 2021. V. 49 (8). P. 4613–4628.
  72. Xue C., Liu S., Chen C. et al. Global proteome analysis links lysine acetylation to diverse functions in Oryza sativa // Proteomics. 2018. V. 18 (1). P. 1700036.
  73. Yadav S.P., Das H.K. Discontinuous incorporation of amino acids in embryo proteins of wheat during germination // Dev. Biol. 1974. V. 36 (1). P. 183–186.
  74. Yang W., Chen Z., Huang Y. et al. Powerdress as the novel regulator enhances Arabidopsis seeds germination tolerance to high temperature stress by histone modification of SOM locus // Plant Sci. 2019. V. 284. P. 91–98.
  75. Yano R., Takebayashi Y., Nambara E. et al. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana // Plant J. 2013. V. 74 (5). P. 815–828.
  76. Yruela I., Moreno-Yruela C., Olsen C.A. Zn2+-dependent histone deacetylases in plants: structure and evolution // Trends Plant Sci. 2021. V. 26 (7). P. 741–757.
  77. van Zanten M., Koini M.A., Geyer R. et al. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation // PNAS USA. 2011. V. 108 (50). P. 20219–20224.
  78. van Zanten M., Zöll C., Wang Z. et al. Histone deacetylase 9 represses seedling traits in Arabidopsis thaliana dry seeds // Plant J. 2014. V. 80 (3). P. 475–488.
  79. Zhang H., Ogas J. An epigenetic perspective on developmental regulation of seed genes // Mol. Plant. 2009. V. 2 (4). P. 610–627.
  80. Zhang Q., Wang P., Hou H. et al. Histone acetylation and reactive oxygen species are involved in the preprophase arrest induced by sodium butyrate in maize roots // Protoplasma. 2017. V. 254. P. 167–179.
  81. Zhao L., Peng T., Chen C.-Y. et al. HY5 interacts with the histone deacetylase HDA15 to repress hypocotyl cell elongation in photomorphogenesis // Plant Physiol. 2019 V. 180 (3). P. 1450–1466.
  82. Zhou Y., Tan B., Luo M. et al. HISTONE DEACETYLASE 19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings // Plant Cell. 2013. V. 25 (1). P. 134–148.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (596KB)

Copyright (c) 2023 Г.Х. Вафина, Е.Е. Ступак

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies