Role of Haptoglobin in Protecting the Toxic Effects of Hemoglobin in Various Pathologies

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review presents modern domestic and foreign literature data on the blood plasma protein haptoglobin, its structure, synthesis, function and interaction with hemoglobin. The ability of haptoglobin in interaction with hemoglobin to reduce the toxic effect of the latter is shown. Clinical studies of such interaction in various pathological conditions such as diabetes mellitus, sickle cell anemia, malaria, sepsis, etc. are described. It is noted that the development of new haptoglobin derivatives can contribute to the prevention of hemoglobin toxicity in hemolytic diseases.

About the authors

M. G. Golubeva

Lomonosov Moscow State University, Faculty of Biology

Author for correspondence.
Email: Mgolubeva46@mail.ru
Russia, Moscow

References

  1. Голубева М.Г. Осмотическая резистентность эритроцитов, методы определения и коррекции, значение при различных патологиях // Успехи соврем. биол. 2019. Т. 139. № 5. С. 446–456.
  2. Голубева М.Г. Влияние физической нагрузки на функциональное состояние мембран эритроцитов // Спорт. мед. 2020. Т. 10. № 2. С. 55–64.
  3. Cмeтaнинa H.C. https://rare-diseases.ru/docs/talas.pdf
  4. Шутов М.Е. Гаптоглобин – что это такое? Показатели нормы // https://www.ayzdorov.ru/ttermini_gaptoglobin.php
  5. Alayash A.I.A., Andersen F.C.B., Maestrup S.K., Bülow L. Haptoglobin: the hemoglobin detoxifier in plasma // Trends Biotechnol. 2013. V. 31. № 1. P. 2–3.
  6. Andersen C.B.F., Stødkilde K., Sæderup K.L. et al. Haptoglobin // Antioxid. Redox Signal. 2017. V. 26. № 14. P. 814–831.
  7. Asleh R., Guetta J., Kalet-Litman S. et al. Haptoglobin geno-type- and diabetes-dependent differences in iron-mediated oxidative stress in vitro and in vivo // Circ. Res. 2005. V. 96. № 4. P. 435–441.
  8. Belcher D.A., Munoz C., Pires I.S. et al. Apohemoglobin –haptoglobin complexes attenuate the hypertensive response to low-molecular-weight polymerized hemoglobin // Blood Adv. 2020. V. 4. № 12. P. 2739–2750.
  9. Buechler P.W., Humar R., Schaer D.J. Haptoglobin therapeutics and compartmentalization of cell-free hemoglobin toxicity // Trends Mol. Med. 2020. V. 26. № 7. P. 683–697.
  10. Cahill L., Levy A., Chiuve E. et al. Haptoglobin genotype is a consistent marker of coronary heart disease risk among individuals with elevated glycosylated hemoglobin // J. Am. Coll. Cardiol. 2013. V. 61. P. 728–737.
  11. Carter K., Worwood M. Haptoglobin: review of the major allele frequencies worldwide and their association with diseases // Int. J. Lab. Hematol. 2007. V. 29. № 2. P. 92–110.
  12. Deckmyn O., Poynard T., Bedossa P. et al. Clinical interest of serum alpha-2 macroglobulin, apolipoprotein A1, and haptoglobin in patients with non-alcogolic fatty liver disease, with and without type 2 diabetes, before or during COVID-19 // Biomedicines. 2022. V. 10. № 3. P. 699.
  13. Dhaliwal G., Cornett P., Tierney L. Hemolytic anemia // Am. Fam. Physician. 2004. V. 69. № 11. P. 2599–2606.
  14. Di Masi A., De Simone G., Ciaccio C. et al. Haptoglobin: from hemoglobin scavenging to human healt // Mol. Aspects Med. 2020. V. 73. P. 100851.
  15. Etzerodt A., Moestrup S.K. CD163 and inflammation: biological, diagnostic, and therapeutic aspects // Antioxid. Redox Signal. 2013. V. 18. № 17. P. 2352–2363.
  16. Fotsing C.B.K., Pieme C.A., Nya P.C.B. et al. Haptoglobin gene polymorphism among sickle cell patients in West Cameroon: hematological and clinical implication // Adv. Hematol. 2021. V. 2021. P. 6939413.
  17. Garland P., Morton M., Haskins W. et al. Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin // Brain Commun. 2020. V. 2. № 1. P. fcz053.
  18. Gbotosho O., Kapetanaki M., Kato J. The worst things in life are free: te role of free hame in sickle cell disease // Front. Immunol. 2021. V. 11. P. 561917.
  19. Graw J.A., Baron D.M., Francis R.C.E. The relevance of hemolysis in anesthesia and intensive care medicine // Anastesiol. Intensivmed. Notfallmed. Schmerzther. 2018. V. 53. № 4. P. 296–305.
  20. Graw J.A., Yu B., Rezoagli E. et al. Endothelial dysfunction inhibits the ability of haptoglobin to prevent hemoglobin-induced hypertension // Am. J. Physiol. Heart Circ. Physiol. 2017. V. 312. № 6. P. H1120–H1127.
  21. Guéye P.M., Glasser N., Férard G., Lessinger J.-M. Influence of human haptoglobin polymorphism on oxidative stress induced by free hemoglobin on red blood cells // Clin. Chem. Lab. Med. 2006. V. 44. № 5. P. 542–547.
  22. Hämäläinen P., Saltevo J., Kautiainen H. et al. Erythropoietin, ferritin, haptoglobin, hemoglobin and transferrin receptor in metabolic syndrome: a case control study // Cardiovasc. Diabetol. 2012. V. 11. P. 116.
  23. Langlois M.R., Delanghe J.R. Biological and clinical significance of haptoglobin polymorphism in humans // Clin. Chem. 1996. V. 42. № 10. P. 1589–1600.
  24. Levy A.P., Asleh R., Blum S. et al. Haptoglobin: basic and clinical aspects // Antioxid. Redox. Signal. 2010. V. 12. № 2. P. 293–304.
  25. Lippi G., Schena F., Salvagno G.L. et al. Foot-strike haemolysis after a 60-km ultramarathon // Blood Transfus. 2012. V. 10. № 3. P. 377–383.
  26. Lippi G., Sanchis-Gomar F. Epidemiological, biological and clinical update on exercise-induced hemolysis // Ann. Transl. Med. 2019. V. 7. № 12. P. 270.
  27. Maffei M., Barone I., Scabia G., Santini F. The multifaceted haptoglobin in the context of adipose tissue and metabolism // Endocr. Rev. 2016. V. 37. № 4. P. 403–416.
  28. Meher S., Mohanty P.K., Patel S. et al. Haptoglobin genotypes associated with vaso-occlusive crisis in sickle anemia patients of Eastern India // Hemoglobin. 2021. V. 45. P. 358–364.
  29. Naryzny S.N., Legina O.K. Haptoglobin as a biomarker // Biochem. Mosc. Suppl. B Biomed. Chem. 2021. V. 15. № 3. P. 184–198.
  30. Nishiie-Yano R., Hirayama S., Tamura M. et al. Hemolysis is responsible for elevation of serum iron concentration after regular exercises in judo athletes // Biol. Trace Elem. Res. 2020. V. 197. № 1. P. 63–69.
  31. Polticelli F., Bocedi A., Minervini G., Ascenzi P. Human haptoglobin structure and function – a molecular modelling study // FEBS J. 2008. V. 275. № 22. P. 5648–5656.
  32. Rodrigues K.F., Pietrani N.T., Carvalho L.M.L. et al. Haptoglobin levels are influenced by Hp1–Hp2 polymorphism, obesity, inflammation, and hypertension in type 2 diabetes mellitus // Endocrinol. Diabetes Nutr. 2019. V. 66. № 2. P. 99–107.
  33. Sadrzadeh S., Bozorgmehr J. Haptoglobin phenotypes in health and disorders // Am. J. Clin. Pathol. 2004. V. 121. Suppl. S97–104.
  34. Sarpong-Kumankomah S.K.B., Knox K.B., Kelly M.E. et al. Quantification of human plasma metalloproteins in multiple sclerosis, ischemic stroke and healthy controls reveals an association of haptoglobin–hemoglobin complexes with age // PLoS One. 2022. V. 17. № 1. P. e0262160.
  35. Schaer C.A., Deuel J.W., Bittermann A.G. et al. Mechanisms of haptoglobin protection against hemoglobin peroxidation triggered endothelial damage // Cell. Death Differ. 2013. V. 20. № 11. P. 1569–1579.
  36. Shih A., MacFarlane A., Verhovsek M. Haptoglobin testing in hemolysis: measurement and interpretation // Am. J. Hematol. 2014. V. 89. № 4. P. 443–447.
  37. Simon A., Schneider N., Gillery Ph., Oudart J.-B. Clinical and biological features of haptoglobin phenotypes // Ann. Biol. Clin. 2020. V. 78. № 5. P. 493–498.
  38. Tang K., Huang S., Cheng T. et al. Haptoglobin phenotype influences the effectiveness of diet-induced weight loss in middle-age abdominally obese women with metabolic abnormalities // Clin. Nutr. 2020. V. 39. № 1. P. 225–233.
  39. van Avondt K., Nur E., Zeerleder S. Mechanisms of haemolysis-induced kidney injury // Nat. Rev. Nephrol. 2019. V. 15. № 11. P. 671–692.
  40. Wassel J. Haptoglobin: function and polymorphism // Clin. Lab. 2000. V. 46. № 11–12. P. 547–552.
  41. Yaǧci S., Serin E., Acicbe O. et al. The relationship between serum erythropoietin, hepcidin, and haptoglobin levels with disease severity and other biochemical values in patients with COVID-19 // Int. J. Lab. Hematol. 2021. V. 43. Suppl. 1. P. 142–151.
  42. Yalamanoglu A., Deuel J.W., Hunt R.C. et al. Depletion of haptoglobin and hemopexin promote hemoglobin-mediated lipoprotein oxidation in sickle cell disease // Am. J. Physiol. Lung Cell. Mol. Physiol. 2018. V. 315. № 5. P. L765–L774.

Copyright (c) 2023 М.Г. Голубева

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies