Role of γδ T Lymphocytes in the Pathogenesis of Autoimmune Diseases with Skin Lesions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Autoimmune diseases are associated with a severe course, early complications, disability and early mortality. Subpopulations of γδ T cells participate in the development of autoimmune diseases, including experimental ones, contributing to tissue damage. The inflammatory functions of γδ T cells are determined by their synthesis of cytokines, including IL-17, IFNγ and TNF-α, which are usually involved in autoimmunity. Different subpopulations of γδ T cells are associated with different autoimmune diseases depending on their tissue expression, and their function may contribute to pathogenesis. In this article we review studies on the role of γδ T cells in autoimmune diseases such as rheumatoid arthritis, psoriasis, psoriatic arthritis, systemic lupus erythematosus, and scleroderma, as well as their animal models. Due to the unique properties of γδ T cells encompassing adaptive and innate immunity functions, a growing understanding of this unique T cell population sheds new light on the pathogenesis of these diseases and potentially allows new therapeutic approaches to their treatment.

Sobre autores

E. Sorokina

Mechnikov Research Institute of Vaccines and Sera; Department of Skin and Venereal Diseases with Cosmetology Course,
Institute of Advanced Training, Federal Medical and Biological Agency

Autor responsável pela correspondência
Email: sorokina-cathrine@yandex.ru
Russia, Moscow; Russia, Moscow

I. Bisheva

Mechnikov Research Institute of Vaccines and Sera

Email: sorokina-cathrine@yandex.ru
Russia, Moscow

N. Mishina

Mechnikov Research Institute of Vaccines and Sera; Department of Skin and Venereal Diseases with Cosmetology Course,
Institute of Advanced Training, Federal Medical and Biological Agency

Email: sorokina-cathrine@yandex.ru
Russia, Moscow; Russia, Moscow

V. Stolpnikova

Mechnikov Research Institute of Vaccines and Sera

Email: sorokina-cathrine@yandex.ru
Russia, Moscow

Bibliografia

  1. Гурский Г.Э., Гребенников В.А., Хоронько В.В. Склеродермия: особенности течения и возможности лечения // Мед. вестник Юга России. 2011. № 1. С. 4–9.
  2. Насонов Е.Л., Коротаева Т.В., Дубинина Т.В., Лила А.М. Ингибиторы ИЛ23/ИЛ17 при иммуновоспалительных ревматологических заболеваниях: новые горизонты // Науч.-практ. ревматол. 2019. Т. 57 (4). С. 400–406.
  3. Нижегородова Д.Б., Зафранская М.М. γδ Т-лимфоциты: общая характеристика, субпопуляционный состав, биологическая роль и функциональные особенности // Мед. иммунол. 2009. Т. 11. № 2–3. С. 115–130.
  4. Парамонов А.А., Каюмова Л.Н., Брускин С.А. и др. Репертуар Т-клеточных рецепторов при некоторых иммунозависимых дерматозах // Рос. журн. кожн. и венер. болезней. 2015. № 4. С. 34–41.
  5. Пинегин Б.В., Иванов О.Л., Пинегин В.Б. Роль клеток иммунной системы и цитокинов в развитии псориаза // Рос. журн. кожн. и венер. болезней. 2013. № 3. С. 19–25.
  6. Пичугина Л.В. Изменение фенотипа лимфоцитов при неиммунодефицитных патологиях // Лаб. медицина. 2008. № 9. С. 39–44.
  7. Хайдуков С.В., Зурочка А.В., Черешнев В.А. Многоцветный цитометрический анализ. Идентификация Т-клеток и их субпопуляций по экспрсссии αβ-TCR и γδ-TCR // Мед. иммунол. 2008. Т. 10. № 2–3. С. 115–124.
  8. Alaibac M., Berti E., Chizzolini C. Role of cellular immunity in the pathogenesis of autoimmune skin diseases // Clin. Exp. Rheumatol. 2006. № 24 (1 Suppl. 40). P. S14-9.
  9. Bank I. The role of gamma delta T cells in autoimmune rheumatic diseases // Cells. 2020. № 9 (2). P. 462.
  10. Bank I., Marcu-Malina V. Quantitative peripheral blood perturbations of γδ T cells in human disease and their clinical implications // Clin. Rev. Allerg. Immunol. 2014. V. 47 (3). P. 311–333.
  11. Cai Y., Shen X., Ding C. et al. Pivotal role of dermal IL-17- producing γδ T cells in skin inflammation // Immunity. 2011. V. 35 (4). P. 596–610.
  12. Cai Y., Xue F., Fleming C. et al. Differential developmental requirement and peripheral regulation for dermal Vgamma4 and Vgamma6T17 cells in health and inflammation // Nat. Commun. 2014. V. 5. P. 3986.
  13. Cochez P.M., Michiels C., Hendrickx E. et al. Ccr6 is dispensable for the development of skin lesions induced by imiquimod despite its effect on epidermal homing of IL-22-producing cells // J. Invest. Dermatol. 2017. V. 137. P. 1094–1103.
  14. Cojocaru M., Cojocaru I.M., Silosi I. et al. Extra-articular manifestations in rheumatoid arthritis // Medica (Bucur). 2010. № 5 (4). P. 286–291.
  15. Conforti A., Di Cola I., Pavlych V. et al. Beyond the joints, the extra-articular manifestations in rheumatoid arthritis // Autoimmun. Rev. 2021. V. 20 (2). P. 102735.
  16. Davey M.S., Willcox C.R., Hunter S. et al. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9– subsets // Nat. Commun. 2018. V. 9 (1). P. 1760.
  17. Dieli F., Sireci G., Di Sano C. et al. Ligand-specific alphabeta and gammadelta T cell responses in childhood tuberculosis // J. Infect. Dis. 2000. V. 181 (1). P. 294–301.
  18. Gaur P., Misra R., Aggarwal A. Natural killer cell and gamma delta T cell alterations in enthesitis related arthritis category of juvenile idiopathic arthritis // Clin. Immunol. 2015. V. 161. P. 163–169.
  19. Hartwig T., Pantelyushin S., Croxford A.L. et al. Dermal IL-17-producing gammadelta T cells establish long-lived memory in the skin // Eur. J. Immunol. 2015. V. 45. P. 3022–3033.
  20. Hawkes J.E., Yan B.Y., Chan T.C., Krueger J.G. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis // J. Immunol. 2018. V. 201. P. 1605–1613.
  21. Holcombe R.F., Baethge B.A., Wolf R.E. et al. Natural killer cells and gamma delta T cells in scleroderma: relationship to disease duration and anti-Scl-70 antibodies // Ann. Rheum. Dis. 1995. V. 54 (1). P. 69–72.
  22. Holtmeier W., Pfander M., Hennemann A. et al. The TCR-delta repertoire in normal human skin is restricted and distinct from the TCR-delta repertoire in the peripheral blood // J. Invest. Dermatol. 2001. V. 116. P. 275–280.
  23. Ippolito A., Wallace D.J., Gladman D. et al. Autoantibodies in systemic lupus erythematosus: comparison of historical and current assessment of seropositivity // Lupus. 2011. V. 20. P. 250–255.
  24. Jung S.M., Kim K.W., Yang C.W. et al. Cytokin-mediated bone destruction in rheumatoid arthritis // J. Immunol. Res. 2014. Art. 263625.
  25. Laggner U., Di Meglio P., Perera G.K. et al. Identification of a novel proinflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis // J. Immunol. 2011. V. 187. P. 2783–2793.
  26. Lamour A., Jouen-Beades F., Lees O. et al. Analysis of T cell receptors in rheumatoid arthritis: the increased expression of HLA-DR antigen on circulating gamma delta+ T cells is correlated with disease activity // Clin. Exp. Immunol. 1992. V. 89. P. 217–222.
  27. Li Y., Huang Z., Yan R. et al. Vγ4 γδ T cells provide an early source of IL-17A and accelerate skin graft rejection // J. Invest. Dermatol. 2017. V. 137. P. 2513–2522.
  28. Liu M.F., Yang C.Y., Chao S.C. et al. Distribution of double-negative (CD4– CD8–, DN) T subsets in blood and synovial fluid from patients with rheumatoid arthritis // Clin. Rheumatol. 1999. V. 18 (3). P. 227–231.
  29. Lu H., Li D.J., Jin L.P. γδ T Cells and related diseases // Am. J. Reprod. Immunol. 2016. V. 75. P. 609–618.
  30. Ma H., Yuan Y., Zhao L. et al. Association of γδ T cell compartment size to disease activity and response to therapy in SLE // PLoS One. 2016. V. 11 (6). P. e0157772.
  31. Ogawa E., Sato Y., Minagawa A., Okuyama R. Pathogenesis of psoriasis and development of treatment // J. Dermatol. 2018. V. 45. P. 264–272.
  32. Olive C., Gatenby P.A., Serjeantson S.W. Restricted junctional diversity of T cell receptor delta gene rearrangements expressed in systemic lupus erythematosus (SLE) patients // Clin. Exp. Immunol. 1994. V. 97. P. 430–438.
  33. Pang D.J., Neves J.F., Sumaria N., Pennington D.J. Understanding the complexity of γδ T-cell subsets in mouse and human // Immunology. 2012. V. 136. P. 283–290.
  34. Radu A.-F., Burgau S.G. Management of rheumatoid arthritis: an overview // Cells. 2021. V. 10 (11). P. 2957.
  35. Ramirez-Valle F., Gray E.E., Cyster J.G. Inflammation induces dermal Vγ4+ γδ T17 memory-like cells that travel to distant skin and accelerate secondary IL-17-driven responses // PNAS USA. 2015. V. 112. P. 8046–8051.
  36. Rizzo H.L., Kagami S., Phillips K.G. et al. IL-23-mediated psoriasis-like epidermal hyperplasia is dependent on IL-17A // J. Immunol. 2011. V. 186. P. 1495–502.
  37. Roark C.L., French J.D., Taylor M.A. et al. Exacerbation of collagen-induced arthritis by olygoclonal IL-17-producing γδ T cells // J. Immunol. 2007. V. 179 (8). P. 5576–5583.
  38. Roark C., Simonian P., Fontenot A. et al. γδ T cells: an important source of IL-17 // Curr. Opin. Immunol. 2008. V. 20 (3). P. 353–357.
  39. Robak E., Niewiadomska H., Robak T. et al. Lymphocytes Tgammadelta in clinically normal skin and peripheral blood of patients with systemic lupus erythematosus and their correlation with disease activity // Mediat. Inflamm. 2001. V. 10 (4). Р. 179–189.
  40. Sheridan B.S., Romagnoli P.A., Pham Q.M. et al. γδ T cells exhibit multifunctional and protective memory in intestinal tissues // Immunity. 2013. V. 39 (1). P. 184–195.
  41. Sourav P., Shilpi Lal G. Role of gamma-delta (γδ) T cells in autoimmunity // Rev. J. Leukoc. Biol. 2015. V. 97. № 2. P. 259–271.
  42. Tortola L., Rosenwald E., Abel B. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk // J. Clin. Invest. 2012. V. 122. P. 3965–3976.
  43. Wang H., Henry O., Distefano M.D. et al. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells // J. Immunol. 2013. V. 191. P. 1029–1042.
  44. Zhu R., Cai X., Zhou C. et al. Dermal Vγ4+ T cells enhance the IMQ-induced psoriasis-like skin inflammatidon in re-challenge d mice // Am. J. Transl. Res. 2017. V. 9 (12). P. 5347–5360.

Declaração de direitos autorais © Е.В. Сорокина, И.В. Бишева, Н.В. Мишина, В.Н. Столпникова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies