Yang–Baxter algebras, convolution algebras, and Grassmannians
- Autores: Gorbunov V.G.1,2,3, Korff C.4, Stroppel C.5
-
Afiliações:
- University of Aberdeen
- HSE University
- Moscow Institute of Physics and Technology (National Research University)
- University of Glasgow
- University of Bonn
- Edição: Volume 75, Nº 5 (2020)
- Páginas: 3-58
- Seção: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133625
- DOI: https://doi.org/10.4213/rm9959
- ID: 133625
Citar
Resumo
Palavras-chave
Sobre autores
Vassily Gorbunov
University of Aberdeen; HSE University; Moscow Institute of Physics and Technology (National Research University)
Email: vgorb10@gmail.com
Christian Korff
University of Glasgow
Email: vgorb10@gmail.com
Catharina Stroppel
University of Bonn
Email: stroppel@math.uni-bonn.de
Bibliografia
- М. Абловиц, Х. Сигур, Солитоны и метод обратной задачи, Мир, М., 1987, 480 с.
- V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233:3 (2003), 513–543
- M. Aganagic, A. Okounkov, “Elliptic stable envelopes”, J. Amer. Math. Soc. (to appear)
- D. Anderson, “Introduction to equivariant cohomology in algebraic geometry”, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 71–92
- D. Anderson, S. Griffeth, E. Miller, “Positivity and Kleiman transversality in equivariant $K$-theory of homogeneous spaces”, J. Eur. Math. Soc., 13:1 (2011), 57–84
- A. Arabia, “Cohomologie $T$-equivariante de la variete de drapeaux d'un groupe de Kač–Moody”, Bull. Soc. Math. France, 117:2 (1989), 129–165
- A. Arabia, “Cohomologie $T$-equivariante de $G/B$ pour un groupe $G$ de Kač–Moody”, C. R. Acad. Sci. Paris Ser. I Math., 302:17 (1986), 631–634
- A. Arabia, “Cycles de Schubert et cohomologie equivariante de $K/T$”, Invent. Math., 85:1 (1986), 39–52
- M. F. Atiyah, R. Bott, “The moment map and equivariant cohomology”, Topology, 23:1 (1984), 1–28
- R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Physics, 70:1 (1972), 193–228
- Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, М., 1985, 488 с.
- E. Beazley, A. Bertiger, K. Taipale, “An equivariant rim hook rule for quantum cohomology of Grassmannians”, 26th international conference on formal power series and algebraic combinatorics (FPSAC 2014) (Chicago, IL, 2014), Discrete Math. Theor. Comput. Sci. Proc., AT, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2014, 23–35
- A. A. Beilinson, G. Lusztig, R. MacPherson, “A geometric setting for the quantum deformation of $GL_n$”, Duke Math. J., 61:2 (1990), 655–677
- A. Berenstein, D. Kazhdan, “Geometric and unipotent crystals”, Visions in mathematics, GAFA 2000 special volume, part I (Tel Aviv, 1999), Mod. Birkhäuser Classics, Birkäuser, Basel, 2000, 188–236
- И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, “Клетки Шуберта и когомологии пространств $G/P$”, УМН, 28:3(171) (1973), 3–26
- A. Bertram, I. Ciocan-Fontanine, W. Fulton, “Quantum multiplication of Schur polynomials”, J. Algebra, 219:2 (1999), 728–746
- I. Bogdan, “Nonsymmetric Macdonald polynomials and Demazure characters”, Duke Math. J., 116:2 (2003), 299–318
- N. M. Bogoliubov, A. G. Izergin, V. E. Korepin, “Quantum inverse scattering method and correlation functions”, Exactly solvable problems in condensed matter and relativistic field theory (Panchgani, 1985), Lecture Notes in Phys., 242, Springer, Berlin, 1985, 220–316
- A. Braverman, D. Maulik, A. Okounkov, “Quantum cohomology of the Springer resolution”, Adv. Math., 227:1 (2011), 421–458
- M. Brion, “Lectures on the geometry of flag varieties”, Topics in cohomological studies of algebraic varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85
- B. Brubaker, D. Bump, S. Friedberg, “Schur polynomials and the Yang–Baxter equation”, Comm. Math. Phys., 308:2 (2011), 281–301
- B. Brubaker, D. Bump, A. Licata, “Whittaker functions and Demazure operators”, J. Number Theory, 146 (2015), 41–68
- A. S. Buch, L. C. Mihalcea, “Quantum $K$-theory of Grassmannians”, Duke Math. J., 156:3 (2011), 501–538
- В. М. Бухштабер, “Операторные дубли и полугруппы отображений в группы”, Докл. РАН, 341:6 (1995), 731–733
- В. М. Бухштабер, “Отображения Янга–Бакстера”, УМН, 53:6(324) (1998), 241–242
- D. Bump, P. J. McNamara, M. Nakasuji, “Factorial Schur functions and the Yang–Baxter equation”, Comment. Math. Univ. St. Pauli, 63:1-2 (2014), 2–45
- I. Cherednik, Double affine Hecke algebras, London Math. Soc. Lecture Note Ser., 319, Cambridge Univ. Press, Cambridge, 2005, xii+434 pp.
- V. Collins, “A puzzle formula for $H^*_{Ttimesmathbb{C}^{times}}(T^*mathbb{P}^n)$”, Sem. Lothar. Combin., 2017, no. 78B, Proceedings of the 29th international conference on formal power series and algebraic combinatorics (London, 2017), 67, 12 pp.
- M. Demazure, “Invariants symetriques entiers des groupes de Weyl et torsion”, Invent. Math., 21 (1973), 287–301
- M. Demazure, “Desingularisation des varietes de Schubert generalisees”, Ann. Sci. Ecole Norm. Sup. (4), 7 (1974), 53–88
- В. Г. Дринфельд, “Алгебры Хопфа и квантовое уравнение Янга–Бакстера”, Докл. АН СССР, 283:5 (1985), 1060–1064
- V. G. Drinfel'd, “Quantum groups”, Proceedings of the international congress of mathematicians (Berkeley, CA, 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820
- V. G. Drinfel'd, “On some unsolved problems in quantum group theory”, Quantum groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8
- B. Dubrovin, “Geometry of 2D topological field theories”, Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Fond. CIME/CIME Found. Subser., Springer, Berlin, 1996, 120–348
- И. А. Дынников, “Об одном отображении Янга–Бакстера и упорядочении Деорнуа”, УМН, 57:3(345) (2002), 151–152
- P. Etingof, “Geometric crystals and set-theoretical solutions to the quantum Yang–Baxter equation”, Comm. Algebra, 31:4 (2003), 1961–1973
- P. Etingof, T. Schedler, A. Soloviev, “Set-theoretical solutions to the quantum Yang–Baxter equation”, Duke Math. J., 100:2 (1999), 169–209
- L. D. Faddeev, “Classical and quantum $L$-matrices”, Exactly solvable problems in condensed matter and relativistic field theory (Panchgani, 1985), Lecture Notes in Phys., 242, Springer, Berlin, 1985, 158–174
- G. Felder, R. Rimanyi, A. Varchenko, “Elliptic dynamical quantum groups equivariant elliptic cohomology”, SIGMA, 14 (2018), 132, 41 pp.
- G. Felder, V. Tarasov, A. Varchenko, “Solutions of the elliptic qKZB equations and Bethe ansatz. I”, Topics in singularity theory. V. I. Arnold's 60th anniversary collection, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 45–75
- H. Franzen, “On cohomology rings of non-commutative Hilbert schemes and CoHa-modules”, Math. Res. Lett., 23:3 (2016), 805–840
- I. B. Frenkel, M. G. Khovanov, “Canonical bases in tensor products and graphical calculus for $U_q(mathfrak{sl}_2)$”, Duke Math. J., 87:3 (1997), 409–480
- I. Frenkel, M. Khovanov, C. Stroppel, “A categorification of finite-dimensional irreducible representations of quantum $mathfrak{sl}_2$ and their tensor products”, Selecta Math. (N. S.), 12:3-4 (2006), 379–431
- У. Фултон, Таблицы Юнга и их приложения к теории представлений и геометрии, МЦНМО, М., 2006, 328 с.
- W. Fulton, R. Pandharipande, “Notes on stable maps and quantum cohomology”, Algebraic geometry, Part 2 (Santa Cruz, 1995), Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, 45–96
- T. Gateva-Ivanova, “A combinatorial approach to the set-theoretic solutions of the Yang–Baxter equation”, J. Math. Phys., 45:10 (2004), 3828–3858
- V. Ginzburg, “Lagrangian construction of the enveloping algebra $U(mathfrak{sl}_n)$”, C. R. Acad. Sci. Paris Ser. I Math., 312:12 (1991), 907–912
- V. Ginzburg, N. Reshetikhin, E. Vasserot, “Quantum groups and flag varieties”, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley, MA, 1992), Contemp. Math., 175, Amer. Math. Soc., Providence, RI, 1994, 101–130
- A. B. Givental, “Homological geometry and mirror symmetry”, Proceedings of the International congress of mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 472–480
- A. B. Givental, “Equivariant Gromov–Witten invariants”, Int. Math. Res. Not. IMRN, 1996:13 (1996), 613–663
- A. Givental, Bumsig Kim, “Quantum cohomology of flag manifolds and Toda lattices”, Comm. Math. Phys., 168:3 (1995), 609–641
- R. Goodman, N. R. Wallach, Symmetry, representations, and invariants, Grad. Texts in Math., 255, Springer, Dordrecht, 2009, xx+716 pp.
- V. Gorbounov, C. Korff, “Quantum integrability and generalised quantum Schubert calculus”, Adv. Math., 313 (2017), 282–356
- M. Goresky, R. Kottwitz, R. MacPherson, “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131:1 (1998), 25–83
- E. Gorsky, P. Wedrich, Evaluations of annular Khovanov–Rozansky homology, 2019, 41 pp.
- P. Guillot, C. Kassel, “Cohomology of invariant Drinfeld twists on group algebras”, Int. Math. Res. Not. IMRN, 2010:10 (2010), 1894–1939
- E. Gutkin, “Integrable systems with delta-potential”, Duke Math. J., 49:1 (1982), 1–21
- I. Halacheva, A. Knutson, P. Zinn-Justin, “Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles”, Sem. Lothar. Combin., 2020, no. 82B, Proceedings of the 5th conference on formal power series and algebraic combinatorics (Ljubljana, 2019), 83, 12 pp.
- M. Hazewinkel, N. Gubareni, V. V. Kirichenko, Algebras, rings and modules. Lie algebras and Hopf algebras, Math. Surveys Monogr., 168, Amer. Math. Soc., Providence, RI, 2010, xii+411 pp.
- D. Hernandez, “Avancees concernant les $R$-matrices et leurs applications d'après Maulik–Okounkov, Kang–Kashiwara–Kim–Oh, …”, Seminaire Bourbaki, Exposes 1120–1135, v. 2016/2017, Asterisque, 407, Soc. Math. France, Paris, 2019, Exp. No. 1129, 297–332
- J. Hietarinta, “Permutation-type solutions to the Yang–Baxter and other $n$-simplex equations”, J. Phys. A, 30:13 (1997), 4757–4771
- H. Y. Huang, F. Y. Wu, H. Kunz, D. Kim, “Interacting dimers on the honeycomb lattice: an exact solution of the five-vertex model”, Phys. A, 228:1-4 (1996), 1–32
- J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge, Cambridge Univ. Press, 1990, xii+204 pp.
- R. Inoue, A. Kuniba, T. Takagi, “Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry”, J. Phys. A, 45:7 (2012), 073001, 64 pp.
- M. Jimbo, “A $q$-analogue of $U(mathfrak{gl}(N+1))$, Hecke algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252
- R. Kane, Reflection groups and invariant theory, CMS Books Math./Ouvrages Math. SMC, 5, Springer-Verlag, New York, 2001, x+379 pp.
- M. Kashiwara, “Crystalizing the $q$-analogue of universal enveloping algebra”, Comm. Math. Phys., 133:2 (1990), 249–260
- M. Kashiwara, “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63:2 (1991), 465–516
- D. Kazhdan, G. Lusztig, “Equivariant $K$-theory and representations of Hecke algebras. II”, Invent. Math., 80:2 (1985), 209–231
- M. Khovanov, A. D. Lauda, “A diagrammatic approach to categorification of quantum groups. I”, Represent. Theory, 13 (2009), 309–347
- Bumsig Kim, “On equivariant quantum cohomology”, Int. Math. Res. Not. IMRN, 1996:17 (1996), 841–851
- A. A. Kirillov, Jr., “Lectures on affine Hecke algebras and Macdonald's conjectures”, Bull. Amer. Math. Soc. (N.S.), 34:3 (1997), 251–292
- S. L. Kleiman, D. Laksov, “Schubert calculus”, Amer. Math. Monthly, 79 (1972), 1061–1082
- A. Knutson, T. Tao, “The honeycomb model of $GL_n(mathbb{C})$ tensor products. I. Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090
- A. Knutson, T. Tao, “Puzzles and (equivariant) cohomology of Grassmannians”, Duke Math. J., 119:2 (2003), 221–260
- A. Knutson, T. Tao, C. Woodward, “The honeycomb model of ${GL}_n(mathbb{C})$ tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone”, J. Amer. Math. Soc., 17:1 (2004), 19–48
- A. Knutson, P. Zinn-Justin, Schubert puzzles and integrability. I: Invariant trilinear forms, 2020 (v1 – 2017), 51 pp.
- M. Kontsevich, Y. Soibelman, “Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants”, Commun. Number Theory Phys., 5:2 (2011), 231–352
- V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum inverse scattering method and correlation functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993, xx+555 pp.
- C. Korff, “Quantum cohomology via vicious and osculating walkers”, Lett. Math. Phys., 104:7 (2014), 771–810
- C. Korff, C. Stroppel, “The $mathfrak{sl}(n)_k$-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology”, Adv. Math., 225:1 (2010), 200–268
- B. Kostant, S. Kumar, “The nil Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Adv. Math., 62:3 (1986), 187–237
- B. Kostant, S. Kumar, “The nil Hecke ring and cohomology of $G/P$ for a Kac–Moody group $G$”, Proc. Nat. Acad. Sci. U.S.A., 83:6 (1986), 1543–1545
- S. Kumar, Kac–Moody groups, their flag varieties and representation theory, Progr. Math., 204, Birkhäuser Boston, Inc., Boston, MA, 2002, xvi+606 pp.
- P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21:5 (1968), 467–490
- M. Libine, Lecture notes on equivariant cohomology, 2010 (v1 – 2007), 72 pp.
- G. Lusztig, “Equivariant $K$-theory and representations of Hecke algebras”, Proc. Amer. Math. Soc., 94:2 (1985), 337–342
- G. Lusztig, “Cuspidal local systems and graded Hecke algebras. I”, Inst. Hautes Etudes Sci. Publ. Math., 67 (1988), 145–202
- G. Lusztig, “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3:2 (1990), 447–498
- A. Mathas, Iwahori–Hecke algebras and Schur algebras of the symmetric group, Univ. Lecture Ser., 15, Amer. Math. Soc., Providence, RI, 1999, xiv+188 pp.
- D. Maulik, A. Okounkov, Quantum groups and quantum cohomology, Asterisque, 408, Soc. Math. France, Paris, 2019, ix+209 pp.
- V. Miemietz, C. Stroppel, “Affine quiver Schur algebras and $p$-adic ${GL}_n$”, Selecta Math. (N. S.), 25:2 (2019), 32, 66 pp.
- L. C. Mihalcea, “Equivariant quantum Schubert calculus”, Adv. Math., 203:1 (2006), 1–33
- A. Molev, Yangians and classical Lie algebras, Math. Surveys Monogr., 143, Amer. Math. Soc., Providence, RI, 2007, xviii+400 pp.
- A. I. Molev, B. E. Sagan, “A Littlewood–Richardson rule for factorial Schur functions”, Trans. Amer. Math. Soc., 351:11 (1999), 4429–4443
- N. A. Nekrasov, S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz”, Nuclear Phys. B Proc. Suppl., 192/193 (2009), 91–112
- A. Okounkov, “Lectures on $K$-theoretic computations in enumerative geometry”, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., 24, Amer. Math. Soc., Providence, RI, 2017, 251–380
- L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev. (2), 65:3-4 (1944), 117–149
- K. Palamarchuk, N. Reshetikhin, “The $6$-vertex model with fixed boundary conditions”, PoS Proc. Sci., 38, Proceedings of the conference “Bethe ansatz: 75 years later” (Brussels, 2006), 012, 44 pp.
- T. Przezdziecki, Quiver Schur algebras and cohomological Hall algebras, 2019, 35 pp.
- N. Reshetikhin, “Lectures on the integrability of the six-vertex model”, Exact methods in low-dimensional statistical physics and quantum computing, Oxford Univ. Press, Oxford, 2010, 197–266
- Н. Ю. Решетихин, Л. А. Тахтаджян, Л. Д. Фаддеев, “Квантование групп Ли и алгебр Ли”, Алгебра и анализ, 1:1 (1989), 178–206
- А. Н. Варченко, Р. Римани, В. О. Тарасов, В. В. Шехтман, “Когомологии многообразия флагов как алгебра Бете”, Функц. анализ и его прил., 45:4 (2011), 16–31
- C. M. Ringel, “Hall algebras and quantum groups”, Invent. Math., 101:3 (1990), 583–591
- R. Rouquier, $2$-Kac–Moody algebras, 2008, 66 pp.
- W. Rump, “Braces, radical rings, and the quantum Yang–Baxter equation”, J. Algebra, 307:1 (2007), 153–170
- Y. B. Sanderson, “On the connection between Macdonald polynomials and Demazure characters”, J. Algebraic Combin., 11:3 (2000), 269–275
- A. Savage, “The tensor product of representations of $U_q(mathfrak{sl}_2)$ via quivers”, Adv. Math., 177:2 (2003), 297–340
- O. Schiffmann, E. Vasserot, “On cohomological Hall algebras of quivers: generators”, J. Reine Angew. Math., 2020:760 (2020), 59–132
- Y. Soibelman, “Remarks on cohomological Hall algebras and their representations”, Arbeitstagung Bonn 2013, Progr. Math., 319, Birkhäuser/Springer, Cham, 2016, 355–385
- L. A. Takhtajan, “Introduction to algebraic Bethe ansatz”, Exactly solvable problems in condensed matter and relativistic field theory (Panchgani, 1985), Lecture Notes in Phys., 242, Springer, Berlin, 1985, 175–219
- V. Tarasov, A. Varchenko, “Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. Math., 128:3 (1997), 501–588
- V. Tarasov, A. Varchenko, “Duality for Knizhnik–Zamolodchikov and dynamical equations”, Acta Appl. Math., 73:1-2 (2002), 141–154
- T. Tokihiro, D. Takahashi, J. Matsukidaira, J. Satsuma, “From soliton equations to integrable cellular automata through a limiting procedure”, Phys. Rev. Lett., 76:18 (1996), 3247–3250
- M. Varagnolo, E. Vasserot, “Canonical bases and KLR-algebras”, J. Reine Angew. Math., 2011:659 (2011), 67–100
- E. Vasserot, “Affine quantum groups and equivariant $K$-theory”, Transform. Groups, 3:3 (1998), 269–299
- A. P. Veselov, “Yang–Baxter map and integrable dynamics”, Phys. Lett. A, 314:3 (2003), 214–221
- A. Weinstein, Ping Xu, “Classical solutions of the quantum Yang–Baxter equation”, Comm. Math. Phys., 148:2 (1992), 309–343
- M. Wheeler, P. Zinn-Justin, “Littlewood–Richardson coefficients for Grothendieck polynomials from integrability”, J. Reine Angew. Math., 2019:757 (2019), 159–195
- F. Y. Wu, “Remarks on the modified potassium dihydrogen phosphate model of a ferroelectric”, Phys. Rev. (2), 168:2 (1968), 539–543
- X. Xiao, “The product formula in cohomological Hall algebras”, São Paulo J. Math. Sci., 7:1 (2013), 59–68
- X. Xiao, The double of representations of cohomological Hall algebra for $A_1$-quiver, 2015 (v1 – 2014), 13 pp.
- C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315
- A. B. Zamolodchikov, A. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Physics, 120:2 (1979), 253–291
- P. Zinn-Justin, “Littlewood–Richardson coefficients and integrable tilings”, Electron. J. Combin., 16:1 (2009), R12, 33 pp.
Arquivos suplementares
