On greedy approximation in complex Banach spaces
- Authors: Gasnikov A.V.1,2,3, Temlyakov V.N.4,2,5,6
-
Affiliations:
- Ivannikov Institute for System Programming of the RAS
- Steklov Mathematical Institute of Russian Academy of Sciences
- Innopolis University
- University of South Carolina
- Lomonosov Moscow State University
- Moscow Center for Fundamental and Applied Mathematics
- Issue: Vol 79, No 6 (2024)
- Pages: 39-56
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/281940
- DOI: https://doi.org/10.4213/rm10186
- ID: 281940
Cite item
Abstract
The general theory of greedy approximation with respect to arbitrary dictionaries is well developed in the case of real Banach spaces. Recently some results proved for the Weak Chebyshev Greedy Algorithm (WCGA) in the case of real Banach spaces were extended to the case of complex Banach spaces. In this paper we extend some of the results known in the real case for greedy algorithms other than the WCGA to the case of complex Banach spaces.Bibliography: 25 titles.
About the authors
Alexander Vladimirovich Gasnikov
Ivannikov Institute for System Programming of the RAS; Steklov Mathematical Institute of Russian Academy of Sciences; Innopolis University
Author for correspondence.
Email: gasnikov@yandex.ru
ORCID iD: 0000-0002-7386-039X
Scopus Author ID: 15762551000
ResearcherId: L-6371-2013
Doctor of physico-mathematical sciences, Associate professor
Vladimir Nikolaevich Temlyakov
University of South Carolina; Steklov Mathematical Institute of Russian Academy of Sciences; Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Email: temlyakovv@gmail.com
Doctor of physico-mathematical sciences, Professor
References
- A. R. Barron, “Universal approximation bounds for superposition of a sigmoidal functions”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945
- A. R. Barron, A. Cohen, W. Dahmen, R. DeVore, “Approximation and learning by greedy algorithms”, Ann. Statist., 36:1 (2008), 64–94
- K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp.
- G. Davis, S. Mallat, M. Avellaneda, “Adaptive greedy approximations”, Constr. Approx., 13:1 (1997), 57–98
- A. V. Dereventsov, V. N. Temlyakov, “A unified way of analyzing some greedy algorithms”, J. Funct. Anal., 277:12 (2019), 108286, 30 pp.
- A. Dereventsov, V. Temlyakov, “Biorthogonal greedy algorithms in convex optimization”, Appl. Comput. Harmon. Anal., 60 (2022), 489–511
- R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187
- R. A. DeVore, V. N. Temlyakov, “Convex optimization on Banach spaces”, Found. Comput. Math., 16:2 (2016), 369–394
- S. Dilworth, G. Garrigos, E. Hernandez, D. Kutzarova, V. Temlyakov, “Lebesgue-type inequalities in greedy approximation”, J. Funct. Anal., 280:5 (2021), 108885, 37 pp.
- M. J. Donahue, L. Gurvits, C. Darken, E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220
- M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE J. Sel. Top. Signal Process., 1:4 (2007), 586–597
- J. H. Friedman, W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823
- M. Ganichev, N. J. Kalton, “Convergence of the weak dual greedy algorithm in $L_p$-spaces”, J. Approx. Theory, 124:1 (2003), 89–95
- Zheming Gao, G. Petrova, “Rescaled pure greedy algorithm for convex optimization”, Calcolo, 56:2 (2019), 15, 14 pp.
- P. J. Huber, “Projection pursuit”, Ann. Statist., 13:2 (1985), 435–475
- M. Jaggi, “Revisiting Frank–Wolfe: projection-free sparse convex optimization”, Proceedings of the 30th international conference on machine learning, Proceedings of Machine Learning Research (PMLR), 28, no. 1, 2013, 427–435
- L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882
- L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 20:1 (1992), 608–613
- S. Shalev-Shwartz, N. Srebro, Tong Zhang, “Trading accuracy for sparsity in optimization problems with sparsity constraints”, SIAM J. Optim., 20:6 (2010), 2807–2832
- V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292
- V. N. Temlyakov, “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292
- V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp.
- V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
- A. Tewari, P. K. Ravikumar, I. S. Dhillon, “Greedy algorithms for structurally constrained high dimensional problems”, Adv. Neural Inf. Process. Syst., 24, NIPS 2011, MIT Press, Cambridge, MA, 2011, 882–890
- Tong Zhang, “Sequential greedy approximation for certain convex optimization problems”, IEEE Trans. Inform. Theory, 49:3 (2003), 682–691
Supplementary files
