Criteria of the $C^m$ approximability of functions on compact sets in $\mathbb{R}^N$ by solutions of homogeneous elliptic equations of the second order and related capacities

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В настоящем обзоре обсуждаются результаты, полученные за последние 12 лет авторами обзора и их соавторами. Основное достижение за этот период состоит в том, что установлены емкостные критерии типа Витушкина для $C^m$-приближаемости функций решениями однородных эллиптических уравнений второго порядка с постоянными комплексными коэффициентами на компактах в $\mathbb R^N$ во всех размерностях $N\in\{2,3,…\}$ и для всех параметров гладкости $m\in[0,2)$. Эти критерии даются в индивидуальной форме. Из них непосредственно вытекают соответствующие критерии для классов функций, установленные ранее Д. Вердерой, Д. Матеу, Д. Оробичем и Ю. Нетрусовым (1996 г., за исключением случаев $m=0$ и $m=1$). Вторым существенным достижением за это время было получение интегрально-геометрического описания всех используемых в указанных критериях емкостей при $m=0$ (М. Я. Мазалов, 2024 г.) и $m=1$ (К. Толса, 2021 г.). В частности, установлена их субаддитивность. Библиография: 69 названий.

About the authors

Maksim Yakovlevich Mazalov

National Research University "Moscow Power Engineering Institute" in Smolensk; Saint Petersburg State University

Email: maksimmazalov@yandex.ru
Doctor of physico-mathematical sciences, Associate professor

Petr Vladimirovich Paramonov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Saint Petersburg State University

Email: petr.paramonov@list.ru

Konstantin Yurievich Fedorovskiy

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Saint Petersburg State University; Moscow Center for Fundamental and Applied Mathematics

Email: kfedorovs@yandex.ru
ORCID iD: 0000-0003-3313-6193
SPIN-code: 2617-9407
Scopus Author ID: 7801498472
ResearcherId: F-2193-2014
Doctor of physico-mathematical sciences, Associate professor

References

  1. М. Я. Мазалов, П. В. Парамонов, К. Ю. Федоровский, “Условия $C^m$-приближаемости функций решениями эллиптических уравнений”, УМН, 67:6(408) (2012), 53–100
  2. H. Whitney, “Analytic extensions of differentiable functions defined on closed sets”, Trans. Amer. Math. Soc., 36:1 (1934), 63–89
  3. И. Стейн, Сингулярные интегралы и дифференциальные свойства функций, Мир, М., 1973, 342 с.
  4. А. Буаве, П. В. Парамонов, “Аппроксимация мероморфными и целыми решениями эллиптических уравнений в банаховых пространствах распределений”, Матем. сб., 189:4 (1998), 3–24
  5. М. Я. Мазалов, “Критерий равномерной приближаемости на произвольных компактах для решений эллиптических уравнений”, Матем. сб., 199:1 (2008), 15–46
  6. A. G. O'Farrell, “Rational approximation in Lipschitz norms. II”, Proc. Roy. Irish Acad. Sect. A, 79:11 (1979), 103–114
  7. J. Verdera, “$C^m$-approximation by solutions of elliptic equations, and Calderon–Zygmund operators”, Duke Math. J., 55:1 (1987), 157–187
  8. А. Г. Витушкин, “Аналитическая емкость множеств в задачах теории приближений”, УМН, 22:6(138) (1967), 141–199
  9. М. Я. Мазалов, “Критерий приближаемости гармоническими функциями в пространствах Липшица”, Исследования по линейным операторам и теории функций. 40, Зап. науч. сем. ПОМИ, 401, ПОМИ, СПб., 2012, 144–171
  10. М. Я. Мазалов, “Критерий равномерной приближаемости гармоническими функциями на компактах в $mathbb R^3$”, Аналитические и геометрические вопросы комплексного анализа, Сборник статей, Труды МИАН, 279, МАИК “Наука/Интерпериодика”, М., 2012, 120–165
  11. М. Я. Мазалов, П. В. Парамонов, “Критерии $C^m$-приближаемости бианалитическими функциями на плоских компактах”, Матем. сб., 206:2 (2015), 77–118
  12. П. В. Парамонов, “Новые критерии равномерной приближаемости гармоническими функциями на компактах в $mathbb R^2$”, Комплексный анализ и его приложения, Сборник статей. К 100-летию со дня рождения Бориса Владимировича Шабата, 85-летию со дня рождения Анатолия Георгиевича Витушкина и 85-летию со дня рождения Андрея Александровича Гончара, Труды МИАН, 298, МАИК “Наука/Интерпериодика”, М., 2017, 216–226
  13. П. В. Парамонов, “Критерии индивидуальной $C^m$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $mathbb R^N$”, Матем. сб., 209:6 (2018), 83–97
  14. P. V. Paramonov, X. Tolsa, “On $C^1$-approximability of functions by solutions of second order elliptic equations on plane compact sets and $C$-analytic capacity”, Anal. Math. Phys., 9:3 (2019), 1133–1161
  15. М. Я. Мазалов, “Критерий равномерной приближаемости индивидуальных функций решениями однородных эллиптических уравнений второго порядка с постоянными комплексными коэффициентами”, Матем. сб., 211:9 (2020), 60–104
  16. П. В. Парамонов, “Критерии $C^1$-приближаемости функций решениями однородных эллиптических уравнений второго порядка на компактах в $mathbb R^N$, $N geq 3$”, Изв. РАН. Сер. матем., 85:3 (2021), 154–177
  17. П. В. Парамонов, “Равномерные аппроксимации функций решениями сильно эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Матем. сб., 212:12 (2021), 77–94
  18. М. Я. Мазалов, “Равномерное приближение функций решениями однородных сильно эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Изв. РАН. Сер. матем., 85:3 (2021), 89–126
  19. П. В. Парамонов, “О метрических свойствах $C$-емкостей, связанных с решениями сильно эллиптических уравнений второго порядка в $mathbb R^2$”, Матем. сб., 213:6 (2022), 111–124
  20. П. В. Парамонов, К. Ю. Федоровский, “Явный вид фундаментальных решений некоторых эллиптических уравнений и связанные с ними $B$- и $C$-емкости”, Матем. сб., 214:4 (2023), 114–131
  21. М. Я. Мазалов, “О соизмеримости некоторых емкостей с гармоническими”, УМН, 78:5(473) (2023), 183–184
  22. М. Я. Мазалов, “О емкостях, соизмеримых с гармоническими”, Матем. сб., 215:2 (2024), 120–146
  23. Л. Хeрмандер, Анализ линейных дифференциальных операторов с частными производными, т. 1, Теория распределений и анализ Фурье, Мир, М., 1986, 464 с.
  24. П. В. Парамонов, К. Ю. Федоровский, “О равномерной и $C^1$-приближаемости функций на компактах в $mathbb{R}^2$ решениями эллиптических уравнений второго порядка”, Матем. сб., 190:2 (1999), 123–144
  25. J. Mateu, Yu. Netrusov, J. Orobitg, J. Verdera, “BMO and Lipschitz approximation by solutions of elliptic equations”, Ann. Inst. Fourier (Grenoble), 46:4 (1996), 1057–1081
  26. A. P. Calderon, A. Zygmund, “Singular integrals and periodic functions”, Studia Math., 14 (1954), 249–271
  27. X. Tolsa, The measures with $L^2$-bounded Riesz transform and the Painleve problem for Lipschitz harmonic functions, 2021, 60 pp.
  28. Дж. Вердера, М. С. Мельников, П. В. Парамонов, “$C^1$-аппроксимация и продолжение субгармонических функций”, Матем. сб., 192:4 (2001), 37–58
  29. R. Harvey, J. C. Polking, “A Laurent expansion for solutions to elliptic equations”, Trans. Amer. Math. Soc., 180 (1973), 407–413
  30. П. В. Парамонов, “О гармонических аппроксимациях в $C^1$-норме”, Матем. сб., 181:10 (1990), 1341–1365
  31. П. В. Парамонов, “Некоторые новые критерии равномерной приближаемости функций рациональными дробями”, Матем. сб., 186:9 (1995), 97–112
  32. X. Tolsa, “Painleve's problem and the semiadditivity of analytic capacity”, Acta Math., 190:1 (2003), 105–149
  33. X. Tolsa, “The semiadditivity of continuous analytic capacity and the inner boundary conjecture”, Amer. J. Math., 126:3 (2004), 523–567
  34. М. С. Мельников, “Аналитическая емкость: дискретный подход и кривизна меры”, Матем. сб., 186:6 (1995), 57–76
  35. R. Harvey, J. C. Polking, “A notion of capacity which characterizes removable singularities”, Trans. Amer. Math. Soc., 169 (1972), 183–195
  36. Л. Карлесон, Избранные проблемы теории исключительных множеств, Мир, М., 1971, 126 с.
  37. М. В. Келдыш, “О разрешимости и устойчивости задачи Дирихле”, УМН, 1941, № 8, 171–231
  38. Н. С. Ландкоф, Основы современной теории потенциала, Наука, М., 1966, 515 с.
  39. А. Л. Вольберг, В. Я. Эйдерман, “Неоднородный гармонический анализ: 16 лет развития”, УМН, 68:6(414) (2013), 3–58
  40. М. Я. Мазалов, “О $gamma_{mathcal L}$-емкостях канторовых множеств”, Алгебра и анализ, 35:5 (2023), 171–182
  41. R. Harvey, J. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125 (1970), 39–56
  42. Н. Н. Тарханов, Ряд Лорана для решений эллиптических систем, Наука, Новосибирск, 1991, 317 с.
  43. М. Я. Мазалов, “О равномерных приближениях бианалитическими функциями на произвольных компактах в $mathbb C$”, Матем. сб., 195:5 (2004), 79–102
  44. P. Mattila, P. V. Paramonov, “On geometric properties of harmonic $operatorname{Lip}_1$-capacity”, Pacific J. Math., 171:2 (1995), 469–491
  45. J. L. Walsh, “The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions”, Bull. Amer. Math. Soc., 35:4 (1929), 499–544
  46. H. Lebesgue, “Sur le problème de Dirichlet”, Rend. Circ. Mat. Palermo, 24 (1907), 371–402
  47. С. Н. Мергелян, “Равномерные приближения функций комплексного переменного”, УМН, 7:2(48) (1952), 31–122
  48. Р. Нарасимхан, Анализ на действительных и комплексных многообразиях, Мир, М., 1971, 232 с.
  49. П. В. Парамонов, “$C^m$-приближения гармоническими полиномами на компактных множествах в $mathbb{R}^n$”, Матем. сб., 184:2 (1993), 105–128
  50. П. В. Парамонов, К. Ю. Федоровский, “О $C^m$-отражении гармонических функций и $C^m$-приближаемости гармоническими полиномами”, Матем. сб., 211:8 (2020), 102–113
  51. Д. Д. Кармона, П. В. Парамонов, К. Ю. Федоровский, “О равномерной аппроксимации полианалитическими многочленами и задаче Дирихле для бианалитических функций”, Матем. сб., 193:10 (2002), 75–98
  52. К. Ю. Федоровский, “О равномерных приближениях функций $n$-аналитическими полиномами на спрямляемых контурах в $mathbb C$”, Матем. заметки, 59:4 (1996), 604–610
  53. К. Ю. Федоровский, “О некоторых свойствах и примерах неванлинновских областей”, Комплексный анализ и приложения, Сборник статей, Труды МИАН, 253, Наука, МАИК “Наука/Интерпериодика”, М., 2006, 204–213
  54. Ю. С. Белов, К. Ю. Федоровский, “Модельные пространства, содержащие однолистные функции”, УМН, 73:1(439) (2018), 181–182
  55. Yu. Belov, A. Borichev, K. Fedorovskiy, “Nevanlinna domains with large boundaries”, J. Funct. Anal., 277:8 (2019), 2617–2643
  56. K. Fedorovskiy, “Nevanlinna domains and uniform approximation by polyanalytic polynomial modules”, Function spaces, theory and applications, Fields Inst. Commun., 87, Springer, Cham, 2023, 207–227
  57. М. Я. Мазалов, “Пример непостоянной бианалитической функции, обращающейся в нуль всюду на нигде не аналитической границе”, Матем. заметки, 62:4 (1997), 629–632
  58. А. Д. Баранов, К. Ю. Федоровский, “Регулярность границ неванлинновских областей и однолистные функции в модельных подпространствах”, Матем. сб., 202:12 (2011), 3–22
  59. М. Я. Мазалов, “Пример неспрямляемого неванлинновского контура”, Алгебра и анализ, 27:4 (2015), 50–58
  60. A. D. Baranov, K. Yu. Fedorovskiy, “On $L^1$-estimates of derivatives of univalent rational functions”, J. Anal. Math., 132 (2017), 63–80
  61. М. Я. Мазалов, “О неванлинновских областях с фрактальными границами”, Алгебра и анализ, 29:5 (2017), 90–110
  62. А. Буаве, П. М. Готье, П. В. Парамонов, “О равномерной аппроксимации $n$-аналитическими функциями на замкнутых множествах в $mathbb C$”, Изв. РАН. Сер. матем., 68:3 (2004), 15–28
  63. J. J. Carmona, K. Yu. Fedorovskiy, “Conformal maps and uniform approximation by polyanalytic functions”, Selected topics in complex analysis, Oper. Theory Adv. Appl., 158, Birkhäuser Verlag, Basel, 2005, 109–130
  64. А. Б. Зайцев, “О равномерной приближаемости функций полиномиальными решениями эллиптических уравнений второго порядка на плоских компактах”, Изв. РАН. Сер. матем., 68:6 (2004), 85–98
  65. А. Б. Зайцев, “О равномерной приближаемости функций полиномами специальных классов на компактах в $mathbb R^2$”, Матем. заметки, 71:1 (2002), 75–87
  66. А. Б. Зайцев, “О равномерной приближаемости функций полиномиальными решениями эллиптических уравнений второго порядка на компактах в $mathbb R^2$”, Матем. заметки, 74:1 (2003), 41–51
  67. A. Bagapsh, K. Fedorovskiy, M. Mazalov, “On Dirichlet problem and uniform approximation by solutions of second-order elliptic systems in $mathbb R^2$”, J. Math. Anal. Appl., 531:1 (2024), 127896, 26 pp.
  68. J. J. Carmona, K. Fedorovskiy, Caratheodory sets in the plane, Mem. Eur. Math. Soc., 14, EMS Press, Berlin, 2024, 146 pp.
  69. G. C. Verchota, A. L. Vogel, “Nonsymmetric systems on nonsmooth planar domains”, Trans. Amer. Math. Soc., 349:11 (1997), 4501–4535

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Мазалов М.Y., Парамонов П.V., Федоровский К.Y.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».