Нелинейные уравнения Фоккера–Планка–Колмогорова
- Авторы: Богачев В.И.1,2, Шапошников С.В.1,2
-
Учреждения:
- Московский государственный университет имени М. В. Ломоносова
- Национальный исследовательский университет "Высшая школа экономики"
- Выпуск: Том 79, № 5 (2024)
- Страницы: 3-60
- Раздел: Статьи
- URL: https://journals.rcsi.science/0042-1316/article/view/265543
- DOI: https://doi.org/10.4213/rm10202
- ID: 265543
Цитировать
Аннотация
Об авторах
Владимир Игоревич Богачев
Московский государственный университет имени М. В. Ломоносова; Национальный исследовательский университет "Высшая школа экономики"
Email: vibogach@mail.ru
ORCID iD: 0000-0001-5249-2965
Scopus Author ID: 7005751293
ResearcherId: P-6316-2016
доктор физико-математических наук, профессор
Станислав Валерьевич Шапошников
Московский государственный университет имени М. В. Ломоносова; Национальный исследовательский университет "Высшая школа экономики"
Email: shaposh.st@ru.net
ORCID iD: 0000-0002-3281-7061
Список литературы
- N. U. Ahmed, Xinhong Ding, “On invariant measures of nonlinear Markov processes”, J. Appl. Math. Stochastic Anal., 6:4 (1993), 385–406
- F. Anceschi, Yuzhe Zhu, “On a spatially inhomogeneous nonlinear Fokker–Planck equation: Cauchy problem and diffusion asymptotics”, Anal. PDE, 17:2 (2024), 379–420
- V. Barbu, “Generalized solutions to nonlinear Fokker–Planck equations”, J. Differential Equations, 261:4 (2016), 2446–2471
- V. Barbu, Semigroup approach to nonlinear diffusion equations, World Sci. Publ., Hackensack, NJ, 2022, vii+212 pp.
- V. Barbu, “The Trotter product formula for nonlinear Fokker–Planck flows”, J. Differential Equations, 345 (2023), 314–333
- V. Barbu, M. Röckner, “Nonlinear Fokker–Planck equations driven by Gaussian linear multiplicative noise”, J. Differential Equations, 265:10 (2018), 4993–5030
- V. Barbu, M. Röckner, “Probabilistic representation for solutions to nonlinear Fokker–Planck equations”, SIAM J. Math. Anal., 50:4 (2018), 4246–4260
- V. Barbu, M. Röckner, “Solutions for nonlinear Fokker–Planck equations with measures as initial data and McKean–Vlasov equations”, J. Funct. Anal., 280:7 (2021), 108926, 35 pp.
- V. Barbu, M. Röckner, “Uniqueness for nonlinear Fokker–Planck equations and weak uniqueness for McKean–Vlasov SDEs”, Stoch. Partial Differ. Equ. Anal. Comput., 9:3 (2021), 702–713
- V. Barbu, M. Röckner, “The invariance principle for nonlinear Fokker–Planck equations”, J. Differential Equations, 315 (2022), 200–221
- V. Barbu, M. Röckner, “Uniqueness for nonlinear Fokker–Planck equations and for McKean–Vlasov SDEs: the degenerate case”, J. Funct. Anal., 285:4 (2023), 109980, 37 pp.
- V. Barbu, M. Röckner, “The evolution to equilibrium of solutions to nonlinear Fokker–Planck equation”, Indiana Univ. Math. J., 72:1 (2023), 89–131
- Я. И. Белопольская, “Системы нелинейных обратных и прямых уравнений Колмогорова, обобщенные решения”, Теория вероятн. и ее примен., 66:1 (2021), 20–54
- A. L. Bertozzi, J. A. Carrillo, T. Laurent, “Blow-up in multidimensional aggregation equations with mildly singular interaction kernels”, Nonlinearity, 22:3 (2009), 683–710
- V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp.
- В. И. Богачев, “Задача Канторовича оптимальной транспортировки мер: новые направления исследований”, УМН, 77:5(467) (2022), 3–52
- V. I. Bogachev, G. Da Prato, M. Röckner, S. V. Shaposhnikov, “Nonlinear evolution equations for measures on infinite dimensional spaces”, Stochastic partial differential equations and applications, Quad. Mat., 25, Dept. Math., Seconda Univ. Napoli, Caserta, 2010, 51–64
- V. I. Bogachev, A. I. Kirillov, S. V. Shaposhnikov, “The Kantorovich and variation distances between invariant measures of diffusions and nonlinear stationary Fokker–Planck–Kolmogorov equations”, Math. Notes, 96:5 (2014), 855–863
- В. И. Богачев, А. И. Кириллов, С. В. Шапошников, “Расстояния между стационарными распределениями диффузий и разрешимость нелинейных уравнений Фоккера–Планка–Колмогорова”, Теория вероятн. и ее примен., 62:1 (2017), 16–43
- В. И. Богачев, А. В. Колесников, С. В. Шапошников, Задачи Монжа и Канторовича оптимальной транспортировки, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2023, 664 с.
- В. И. Богачев, Т. И. Красовицкий, С. В. Шапошников, “О единственности вероятностных решений уравнения Фоккера–Планка–Колмогорова”, Матем. сб., 212:6 (2021), 3–42
- В. И. Богачев, Н. В. Крылов, М. Рeкнер, “Эллиптические и параболические уравнения для мер”, УМН, 64:6(390) (2009), 5–116
- В. И. Богачeв, Н. В. Крылов, М. Рeкнер, С. В. Шапошников, Уравнения Фоккера–Планка–Колмогорова, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2013, 592 с.
- В. И. Богачев, М. Рeкнер, С. В. Шапошников, “Нелинейные эволюционные и транспортные уравнения для мер”, Докл. РАН, 429:1 (2009), 7–11
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Distances between transition probabilities of diffusions and applications to nonlinear Fokker–Planck–Kolmogorov equations”, J. Funct. Anal., 271:5 (2016), 1262–1300
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “The Poisson equation and estimates for distances between stationary distributions of diffusions”, J. Math. Sci. (N.Y.), 232:3 (2018), 254–282
- В. И. Богачев, М. Рeкнер, С. В. Шапошников, “Сходимость к стационарным мерам в нелинейных уравнениях Фоккера–Планка–Колмогорова”, Докл. РАН, 482:4 (2018), 369–374
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Convergence in variation of solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary measures”, J. Funct. Anal., 276:12 (2019), 3681–3713
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On convergence to stationary distributions for solutions of nonlinear Fokker–Planck–Kolmogorov equations”, J. Math. Sci. (N. Y.), 242:1 (2019), 69–84
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “On the Ambrosio–Figalli–Trevisan superposition principle for probability solutions to Fokker–Planck–Kolmogorov equations”, J. Dynam. Differential Equations, 33:2 (2021), 715–739
- В. И. Богачев, М. Рeкнер, С. В. Шапошников, “Задачи Колмогорова об уравнениях для стационарных и переходных вероятностей диффузионных процессов”, Теория вероятн. и ее примен., 68:3 (2023), 420–455
- V. I. Bogachev, M. Röckner, S. V. Shaposhnikov, “Zvonkin's transform and the regularity of solutions to double divergence form elliptic equations”, Comm. Partial Differential Equations, 48:1 (2023), 119–149
- В. И. Богачев, Д. И. Салахов, С. В. Шапошников, “Уравнение Фоккера–Планка–Колмогорова с нелинейными членами локального и нелокального вида”, Алгебра и анализ, 35:5 (2023), 11–38
- В. И. Богачев, О. Г. Смолянов, В. И. Соболев, Топологические векторные пространства и их приложения, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2012, 584 с.
- F. Bolley, I. Gentil, A. Guillin, “Convergence to equilibrium in Wasserstein distance for Fokker–Planck equations”, J. Funct. Anal., 263:8 (2012), 2430–2457
- F. Bolley, I. Gentil, A. Guillin, “Uniform convergence to equilibrium for granular media”, Arch. Ration. Mech. Anal., 208:2 (2013), 429–445
- F. Bouchut, “Existence and uniqueness of a global smooth solution for the Vlasov–Poisson–Fokker–Planck system in three dimensions”, J. Funct. Anal., 111:1 (1993), 239–258
- О. А. Бутковский, “Об эргодических свойствах нелинейных марковских цепей и стохастических уравнений Маккина–Власова”, Теория вероятн. и ее примен., 58:4 (2013), 782–794
- J. A. Cañizo, J. A. Carrillo, P. Laurençot, J. Rosado, “The Fokker–Planck equation for bosons in 2D: well-posedness and asymptotic behavior”, Nonlinear Anal., 137 (2016), 291–305
- P. Cardaliaguet, F. Delarue, J.-M. Lasry, P.-L. Lions, The master equation and the convergence problem in mean field games, Ann. of Math. Stud., 201, Princeton Univ. Press, Princeton, NJ, 2019, x+212 pp.
- R. Carmona, F. Delarue, Probabilistic theory of mean field games with applications, v. I, Probab. Theory Stoch. Model., 83, Mean field FBSDEs, control, and games, Springer, Cham, 2018, xxv+713 pp.
- J. A. Carrillo, A. Clini, S. Solem, “The mean field limit of stochastic differential equation systems modeling grid cells”, SIAM J. Math. Anal., 55:4 (2023), 3602–3634
- J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepčev, “Global-in-time weak measure solutions and finite-time aggregation for non-local interaction equations”, Duke Math. J., 156:2 (2011), 229–271
- J. A. Carrillo, R. Duan, A. Moussa, “Global classical solutions close to equilibrium to the Vlasov–Fokker–Planck–Euler system”, Kinet. Relat. Models, 4:1 (2011), 227–258
- J. A. Carrillo, D. Gomez-Castro, J. L. Vazquez, “Infinite-time concentration in aggregation–diffusion equations with a given potential”, J. Math. Pures Appl. (9), 157 (2022), 346–398
- J. A. Carrillo, K. Hopf, J. L. Rodrigo, “On the singularity formation and relaxation to equilibrium in 1D Fokker–Planck model with superlinear drift”, Adv. Math., 360 (2020), 106883, 66 pp.
- J. A. Carrillo, P. Laurençot, J. Rosado, “Fermi–Dirac–Fokker–Planck equation: well-posedness & long-time asymptotics”, J. Differential Equations, 247:8 (2009), 2209–2234
- J. A. Carrillo, S. Lisini, G. Savare, D. Slepčev, “Nonlinear mobility continuity equations and generalized displacement convexity”, J. Funct. Anal., 258:4 (2010), 1273–1309
- J. A. Carrillo, J. Rosado, F. Salvarani, “1D nonlinear Fokker–Planck equations for fermions and bosons”, Appl. Math. Lett., 21:2 (2008), 148–154
- P.-E. Chaudru de Raynal, N. Frikha, “Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space”, J. Math. Pures Appl. (9), 159 (2022), 1–167
- M. Coghi, B. Gess, “Stochastic nonlinear Fokker–Planck equations”, Nonlinear Anal., 187 (2019), 259–278
- M. Colombo, G. Crippa, M. Graffe, L. V. Spinolo, “Recent results on the singular local limit for nonlocal conservation laws”, Hyperbolic problems: theory, numerics, applications, AIMS Ser. Appl. Math., 10, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2020, 369–376
- M. Dieckmann, “A restricted superposition principle for (non-)linear Fokker–Planck–Kolmogorov equations on Hilbert spaces”, J. Evol. Equ., 22:2 (2022), 55, 28 pp.
- Р. Л. Добрушин, “Уравнения Власова”, Функц. анализ и его прил., 13:2 (1979), 48–58
- Hongjie Dong, L. Escauriaza, Seick Kim, “On $C^1$, $C^2$, and weak type-$(1,1)$ estimates for linear elliptic operators. II”, Math. Ann., 370:1-2 (2018), 447–489
- Hongjie Dong, L. Escauriaza, Seick Kim, “On $C^{1/2,1}$, $C^{1,2}$, and $C^{0,0}$ estimates for linear parabolic operators”, J. Evol. Equ., 21:4 (2021), 4641–4702
- Hongjie Dong, Seick Kim, “On $C^1$, $C^2$, and weak type-$(1, 1)$ estimates for linear elliptic operators”, Comm. Partial Differential Equations, 42:3 (2017), 417–435
- A. Eberle, “Reflection couplings and contraction rates for diffusions”, Probab. Theory Related Fields, 166:3-4 (2016), 851–886
- A. Eberle, A. Guillin, R. Zimmer, “Quantitative Harris-type theorems for diffusions and McKean–Vlasov processes”, Trans. Amer. Math. Soc., 371:10 (2019), 7135–7173
- M. Fathi, M. Mikulincer, “Stability estimates for invariant measures of diffusion processes, with applications to stability of moment measures and Stein kernels”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 23:3 (2022), 1417–1445
- F. Flandoli, M. Leocata, C. Ricci, “The Navier–Stokes–Vlasov–Fokker–Planck system as a scaling limit of particles in a fluid”, J. Math. Fluid Mech., 23:2 (2021), 40, 39 pp.
- T. D. Frank, Nonlinear Fokker–Planck equations. Fundamentals and applications, Springer Ser. Synergetics, Springer-Verlag, Berlin, 2005, xii+404 pp.
- T. D. Frank, “Linear and nonlinear Fokker–Planck equations”, Synergetics, Encycl. Complex. Syst. Sci., Springer, New York, 2020, 149–182
- T. Funaki, “A certain class of diffusion processes associated with nonlinear parabolic equations”, Z. Wahrsch. Verw. Gebiete, 67:3 (1984), 331–348
- G. Furioli, A. Pulvirenti, E. Terraneo, G. Toscani, “Fokker–Planck equations in the modeling of socio-economic phenomena”, Math. Models Methods Appl. Sci., 27:1 (2017), 115–158
- S. Grube, “Strong solutions to McKean–Vlasov SDEs with coefficients of Nemytskii type: the time-dependent case”, J. Evol. Equ., 24:2 (2024), 37, 14 pp.
- A. Guillin, P. Le Bris, P. Monmarche, “Convergence rates for the Vlasov–Fokker–Planck equation and uniform in time propagation of chaos in non convex cases”, Electron. J. Probab., 27 (2022), 124, 44 pp.
- W. R. P. Hammersley, D. Šiška, Ł. Szpruch, “McKean–Vlasov SDEs under measure dependent Lyapunov conditions”, Ann. Inst. Henri Poincare Probab. Stat., 57:2 (2021), 1032–1057
- K. Hopf, “Singularities in $L^1$-supercritical Fokker–Planck equations: a qualitative analysis”, Ann. Inst. H. Poincare C Anal. Non Lineaire, 41:2 (2024), 357–403
- Xing Huang, Panpan Ren, Feng-Yu Wang, “Distribution dependent stochastic differential equations”, Front. Math. China, 16:2 (2021), 257–301
- Xing Huang, M. Röckner, Feng-Yu Wang, “Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs”, Discrete Contin. Dyn. Syst., 39:6 (2019), 3017–3035
- Xing Huang, Feng-Yu Wang, “Singular McKean–Vlasov (reflecting) SDEs with distribution dependent noise”, J. Math. Anal. Appl., 514:1 (2022), 126301, 21 pp.
- Sukjung Hwang, Seick Kim, “Green's function for second order elliptic equations in non-divergence form”, Potential Anal., 52:1 (2020), 27–39
- E. Issoglio, F. Russo, “McKean SDEs with singular coefficients”, Ann. Inst. Henri Poincare Probab. Stat., 59:3 (2023), 1530–1548
- Min Ji, Zhongwei Shen, Yingfei Yi, “Convergence to equilibrium in Fokker–Planck equations”, J. Dynam. Differential Equations, 31:3 (2019), 1591–1615
- A. Jüngel, Entropy methods for diffusive partial differential equations, SpringerBriefs Math., Springer, Cham, 2016, viii+139 pp.
- M. Kac, “Foundations of kinetic theory”, Proceedings of the third Berkeley symposium on mathematical statistics and probability, 1954–1955, v. 3, Univ. California Press, Berkeley–Los Angeles, CA, 1956, 171–197
- E. F. Keller, L. A. Segel, “Initiation of slime mold aggregation viewed as an instability”, J. Theoret. Biol., 26:3 (1970), 399–415
- A. Kiselev, F. Nazarov, L. Ryzhik, Yao Yao, “Chemotaxis and reactions in biology”, J. Eur. Math. Soc. (JEMS), 25:7 (2023), 2641–2696
- V. Kolokoltsov, Differential equations on measures and functional spaces, Birkhäuser Adv. Texts Basler Lehrbücher, Birkhäuser/Springer, Cham, 2019, xvi+525 pp.
- S. Kondratyev, D. Vorotnikov, “Nonlinear Fokker–Planck equations with reaction as gradient flows of the free energy”, J. Funct. Anal., 278:2 (2020), 108310, 40 pp.
- А. А. Коньков, “О стабилизации решений нелинейного уравнения Фоккера–Планка”, Тр. сем. им. И. Г. Петровского, 29, Изд-во Моск. ун-та, М., 2013, 333–345
- В. В. Козлов, “Обобщенное кинетическое уравнение Власова”, УМН, 63:4(382) (2008), 93–130
- В. В. Козлов, “Кинетическое уравнение Власова, динамика сплошных сред и турбулентность”, Нелинейная динам., 6:3 (2010), 489–512
- Hailiang Li, G. Toscani, “Long-time asymptotics of kinetic models of granular flows”, Arch. Ration. Mech. Anal., 172:3 (2004), 407–428
- Jie Liao, Qianrong Wang, Xiongfeng Yang, “Global existence and decay rates of the solutions near Maxwellian for non-linear Fokker–Planck equations”, J. Stat. Phys., 173:1 (2018), 222–241
- S. Lisini, A. Marigonda, “On a class of modified Wasserstein distances induced by concave mobility functions defined on bounded intervals”, Manuscripta Math., 133:1-2 (2010), 197–224
- O. A. Manita, “Nonlinear Fokker–Planck–Kolmogorov equations in Hilbert spaces”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. науч. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 184–206
- O. A. Manita, “Estimates for transportation costs along solutions to Fokker–Planck–Kolmogorov equations with dissipative drifts”, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28:3 (2017), 601–618
- O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “On uniqueness of solutions to nonlinear Fokker–Planck–Kolmogorov equations”, Nonlinear Anal., 128 (2015), 199–226
- O. A. Manita, M. S. Romanov, S. V. Shaposhnikov, “Estimates of distances between solutions of Fokker–Planck–Kolmogorov equations with partially degenerate diffusion matrices”, Theory Stoch. Process., 23:2 (2018), 41–54
- О. А. Манита, С. В. Шапошников, “Нелинейные параболические уравнения для мер”, Алгебра и анализ, 25:1 (2013), 64–93
- H. P. McKean, Jr., “A class of Markov processes associated with nonlinear parabolic equations”, Proc. Nat. Acad. Sci. U.S.A., 56:6 (1966), 1907–1911
- H. P. McKean, Jr., “Propagation of chaos for a class of non-linear parabolic equations”, Stochastic differential equations, Lecture Series in Differential Equations, Session 7, Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, Arlington, VA, 1967, 41–57
- S. Mehri, W. Stannat, “Weak solutions to Vlasov–McKean equations under Lyapunov-type conditions”, Stoch. Dyn., 19:6 (2019), 1950042, 23 pp.
- Y. Mishura, A. Veretennikov, “Existence and uniqueness theorems for solutions of McKean–Vlasov stochastic equations”, Theory Probab. Math. Statist., 103 (2020), 59–101
- Э. Митидиери, С. И. Похожаев, “Априорные оценки и отсутствие решений нелинейных уравнений и неравенств в частных производных”, Тр. МИАН, 234, Наука, МАИК “Наука/Интерпериодика”, М., 2001, 3–383
- Э. Митидиери, С. И. Похожаев, “Лиувиллевы теоремы для некоторых классов нелинейных нелокальных задач”, Исследования по теории функций и дифференциальным уравнениям, Сборник статей. К 100-летию со дня рождения академика Сергея Михайловича Никольского, Труды МИАН, 248, Наука, МАИК “Наука/Интерпериодика”, М., 2005, 164–184
- A. Mogilner, L. Edelstein-Keshet, “A non-local model for a swarm”, J. Math. Biol., 38:6 (1999), 534–570
- A. Okubo, S. A. Levin, Diffusion and ecological problems: modern perspectives, Interdiscip. Appl. Math., 14, 2nd ed., Springer-Verlag, New York, 2001, xx+467 pp.
- C. Olivera, A. Richard, M. Tomaševic, “Quantitative particle approximation of nonlinear Fokker–Planck equations with singular kernel”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 24:2 (2023), 691–749
- R. Precup, P. Rubbioni, “Stationary solutions of Fokker–Planck equations with nonlinear reaction terms in bounded domains”, Potential Anal., 57:2 (2022), 181–199
- M. Rehmeier, “Flow selections for (nonlinear) Fokker–Planck–Kolmogorov equations”, J. Differential Equations, 328 (2022), 105–132
- M. Rehmeier, “Linearization and a superposition principle for deterministic and stochastic nonlinear Fokker–Planck–Kolmogorov equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 24:3 (2023), 1705–1739
- Panpan Ren, M. Röckner, Feng-Yu Wang, “Linearization of nonlinear Fokker–Planck equations and applications”, J. Differential Equations, 322 (2022), 1–37
- Zhenjie Ren, Xiaolu Tan, N. Touzi, Junjian Yang, “Entropic optimal planning for path-dependent mean field games”, SIAM J. Control Optim., 61:3 (2023), 1415–1437
- K. Schuh, “Global contractivity for Langevin dynamics with distribution-dependent forces and uniform in time propagation of chaos”, Ann. Inst. Henri Poincare Probab. Stat., 60:2 (2024), 753–789
- S. V. Shaposhnikov, “Nonlinear Fokker–Planck–Kolmogorov equations for measures”, Stochastic partial differential equations and related fields, Springer Proc. Math. Stat., 229, Springer, Cham, 2018, 367–379
- Zheng Sun, J. A. Carrillo, Chi-Wang Shu, “A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials”, J. Comput. Phys., 352:4 (2018), 76–104
- Л. Г. Тоноян, “Нелинейные эллиптические уравнения для мер”, Докл. РАН, 439:2 (2011), 174–177
- G. Toscani, “Finite time blow up in Kaniadakis–Quarati model of Bose–Einstein particles”, Comm. Partial Differential Equations, 37:1 (2012), 77–87
- A. Tosin, M. Zanella, “Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles”, Multiscale Model. Simul., 17:2 (2019), 716–749
- Alvin Tse, “Higher order regularity of nonlinear Fokker–Planck PDEs with respect to the measure component”, J. Math. Pures Appl. (9), 150 (2021), 134–180
- V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and related equations, Elsevier, Inc., Amsterdam, 2011, xvi+304 pp.
- A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations”, Monte Carlo and quasi-Monte Carlo methods 2004, Springer-Verlag, Berlin, 2006, 471–486
- Feng-Yu Wang, “Distribution dependent reflecting stochastic differential equations”, Sci. China Math., 66:11 (2023), 2411–2456
Дополнительные файлы
