Boltzmann-type kinetic equations and discrete models
- Authors: Bobylev A.V.1,2
-
Affiliations:
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Peoples' Friendship University of Russia named after Patrice Lumumba
- Issue: Vol 79, No 3 (2024)
- Pages: 93-148
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/257736
- DOI: https://doi.org/10.4213/rm10161
- ID: 257736
Cite item
Abstract
Keywords
About the authors
Aleksandr Vasil'evich Bobylev
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences; Peoples' Friendship University of Russia named after Patrice Lumumba
ORCID iD: 0000-0001-9348-0864
Candidate of physico-mathematical sciences
References
- R. Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang, “Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff”, Kyoto J. Math., 52:3 (2012), 433–463
- L. Arkeryd, “On the Boltzmann equation. I. Existence”, Arch. Ration. Mech. Anal., 45 (1972), 1–16
- L. Arkeryd, “$L^infty$ estimates for the space-homogeneous Boltzmann equation”, J. Stat. Phys., 31:2 (1983), 347–361
- L. Arkeryd, “A quantum Boltzmann equation for Haldane statistics and hard forces; the space-homogeneous initial value problem”, Comm. Math. Phys., 298:2 (2010), 573–583
- L. Arkeryd, “On low temperature kinetic theory: spin diffusion, Bose–Einstein condensates, anyons”, J. Stat. Phys., 150:6 (2013), 1063–1079
- L. Arkeryd, A. Nouri, “Bose condensates in interaction with excitations: a kinetic model”, Comm. Math. Phys., 310:3 (2012), 765–788
- L. Arkeryd, A. Nouri, “A Milne problem from a Bose condensate with excitations”, Kinet. Relat. Models, 6:4 (2013), 671–686
- А. А. Арсеньев, “Задача Коши для линеаризованного уравнения Больцмана”, Ж. вычисл. матем. и матем. физ., 5:5 (1965), 864–882
- R. Balescu, Statistical mechanics of charged particles, Monographs in Statistical Physics and Thermodynamics, 4, Intersci. Publ. John Wiley & Sons, Ltd., London–New York–Sydney, 1963, xii+477 pp.
- A. V. Bobylev, Kinetic equations, v. 1, De Gruyter Ser. Appl. Numer. Math., 5/1, Boltzmann equation, Maxwell models, and hydrodynamics beyond Navier–Stokes, De Gruyter, Berlin, 2020, xiii+244 pp.
- A. V. Bobylev, C. Cercignani, “Discrete velocity models without nonphysical invariants”, J. Stat. Phys., 97:3-4 (1999), 677–686
- А. В. Бобылев, С. Б. Куксин, “Уравнение Больцмана и волновые кинетические уравнения”, Препринты ИПМ им. М. В. Келдыша, 2023, 031, 20 с.
- A. V. Bobylev, A. Palczewski, J. Schneider, “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci. Paris Ser. I Math., 320:5 (1995), 639–644
- A. V. Bobylev, M. C. Vinerean, “Construction of discrete kinetic models with given invariants”, J. Stat. Phys., 132:1 (2008), 153–170
- Н. Н. Боголюбов, Проблемы динамической теории в статистической физике, Гостехиздат, М.–Л., 1946, 120 с.
- L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen”, Wien. Ber., 66 (1872), 275–370
- J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414
- H. Cabannes, The discrete Boltzmann equation (theory and applications), Lecture notes given at the University of California, Univ. of California, Berkeley, 1980, viii+55 pp.
- Т. Карлеман, Математические задачи кинетической теории газов, ИЛ, М., 1960, 120 с.
- C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, xii+455 pp.
- C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994, viii+347 pp.
- S. Chapman, “On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas”, Philos. Trans. Roy. Soc. London Ser. A, 216:538-548 (1916), 279–348
- R. J. DiPerna, P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 312–366
- W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90
- A. Dymov, S. Kuksin, “Formal expansions in stochastic model for wave turbulence 1: kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014
- R. S. Ellis, M. A. Pinsky, “The first and second fluid approximations to the linearized Boltzmann equation”, J. Math. Pures Appl. (9), 54 (1975), 125–156
- D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen, Almqvist & Wiksells, Uppsala, 1917, vi+160 pp.
- M. Escobedo, J. J. L. Velazquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238, no. 1124, Amer. Math. Soc., Providence, RI, 2015, v+107 pp.
- L. Fainsilberg, P. Kurlberg, B. Wennberg, “Lattice points on circles and discrete velocity models for the Boltzmann equation”, SIAM J. Math. Anal., 37:6 (2006), 1903–1922
- А. А. Галеев, В. И. Карпман, “Турбулентная теория слабонеравновесной разреженной плазмы и структура ударных волн”, ЖЭТФ, 44:2 (1963), 592–602
- R. Gatignol, Theorie cinetique des gaz à repartition discrète de vitesses, Lecture Notes in Phys., 36, Springer-Verlag, Berlin–New York, 1975, ii+219 pp.
- D. Goldstein, B. Sturtevant, J. E. Broadwell, “Investigations of the motion of discrete-velocity gases”, Rared gas dynamics: theoretical and computational techniques, Progr. Astronaut. Aeronaut., 118, AIAA, Washington, DC, 1989, 100–117
- Е. П. Голубева, О. М. Фоменко, “Асимптотическое распределение целых точек на трехмерной сфере”, Аналитическая теория чисел и теория функций. 8, Зап. науч. сем. ЛОМИ, 160, Изд-во “Наука”, Ленинград. отд., Л., 1987, 54–71
- H. Grad, “Principles of the kinetic theory of gases”, Thermodynamik der Gase, Handbuch Phys., 12, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 205–294
- E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, 1985, xi+251 pp.
- D. Hilbert, “Begründung der kinetischen Gastheorie”, Math. Anal., 72:4 (1912), 562–577
- R. Illner, T. Platkowski, “Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory”, SIAM Rev., 30:2 (1988), 213–255
- H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401
- М. Кац, Вероятность и смежные вопросы в физике, Мир, М., 1965, 407 с.
- Л. Ландау, “Кинетическое уравнение в случае кулоновского взаимодействия”, ЖЭТФ, 7:2 (1937), 203–209
- Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. 1, Механика, 3-е изд., Наука, М., 1973, 208 с.
- O. E. Lanford, III, “Time evolution of large classical systems”, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, WA, 1974), Lecture Notes in Phys., 38, Springer-Verlag, Berlin–New York, 1975, 1–111
- Е. М. Лифшиц, Л. П. Питаевский, Теоретическая физика, т. 10, Физическая кинетика, Наука, М., 1979, 528 с.
- Ю. В. Линник, Эргодические свойства алгебраических полей, Изд-во Ленингр. ун-та, Л., 1967, 208 с.
- А. М. Ляпунов, Общая задача об устойчивости движения, Дисс. … докт. физ.-матем. наук, Харьк. матем. о-во, Харьков, 1892, 250 с.
- Н. Б. Маслова, А. Н. Фирсов, “Решение задачи Коши для уравнения Больцмана. I”, Вестн. Ленингр. ун-та, 1975, № 19, 83–88
- J. C. Maxwell, “On the dynamical theory of gases”, Philos. Trans. Roy. Soc. London, 157 (1867), 49–88
- D. Morgenstern, “General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell–Boltzmann equation in the case of Maxwellian molecules”, Proc. Natl. Acad. Sci. U.S.A., 40:8 (1954), 719–721
- L. W. Nordheim, “On the kinetic method in the new statistics and application in the electron theory of conductivity”, Proc. Roy. Soc. London Ser. A, 119:783 (1928), 689–698
- A. Palczewski, J. Schneider, A. V. Bobylev, “A consistency result for a discrete-velocity model of the Boltzmann equation”, SIAM J. Numer. Anal., 34:5 (1997), 1865–1883
- V. A. Panferov, A. G. Heintz, “A new consistent discrete-velocity model for the Boltzmann equation”, Math. Methods Appl. Sci., 25:7 (2002), 571–593
- P. Sarnak, Some applications of modular forms, Cambridge Tracts in Math., 99, Cambridge Univ. Press, Cambridge, 1990, x+111 pp.
- А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников, Дифференциальные уравнения, Курс высшей математики и математической физики, 7, Наука, М., 1980, 232 с.
- E. A. Uehling, G. E. Uhlenbeck, “Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I”, Phys. Rev. (2), 43:7 (1933), 552–561
- S. Ukai, “On the existence of global solutions of mixed problem for non-linear Boltzmann equation”, Proc. Japan Acad., 50:3 (1974), 179–184
- V. V. Vedenyapin, “Velocity inductive construction for mixtures”, Transport Theory Statist. Phys., 28:7 (1999), 727–742
- В. В. Веденяпин, Ю. Н. Орлов, “О законах сохранения для полиномиальных гамильтонианов и для дискретных моделей уравнения Больцмана”, ТМФ, 121:2 (1999), 307–315
- C. Villani, “A review of mathematical topics in collisional kinetic theory”, Handbook of mathematical fluid dynamics, v. 1, Noth-Holland, Amsterdam, 2002, 71–305
- А. А. Власов, “О вибрационных свойствах электронного газа”, ЖЭТФ, 8:3 (1938), 291–318
- В. Е. Захаров, “Решаемая модель слабой турбулентности”, ПМТФ, 1965, № 1, 14–20
- E. Zermelo, “Ueber einen Satz der Dynamik und die mechanische Wärmetheorie”, Ann. Phys., 293:3 (1896), 485–494
Supplementary files
