Boltzmann-type kinetic equations and discrete models
- Authors: Bobylev A.V.1,2
-
Affiliations:
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Peoples' Friendship University of Russia named after Patrice Lumumba
- Issue: Vol 79, No 3 (2024)
- Pages: 93-148
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/257736
- DOI: https://doi.org/10.4213/rm10161
- ID: 257736
Cite item
Abstract
The known non-linear kinetic equations (in particular, the wave kinetic equation and the quantum Nordheim–Uehling–Uhlenbeck equations) are considered as a natural generalization of the classical spatially homogeneous Boltzmann equation. To this goal we introduce the general Boltzmann-type kinetic equation that depends on a function of four real variables $F(x,y;v,w)$. The function $F$ is assumed to satisfy certain commutation relations. The general properties of this equation are studied. It is shown that the kinetic equations mentioned above correspond to different forms of the function (polynomial) $F$. Then the problem of discretization of the general Boltzmann-type kinetic equation is considered on the basis of ideas which are similar to those used for the construction of discrete models of the Boltzmann equation. The main attention is paid to discrete models of the wave kinetic equation. It is shown that such models have a monotone functional similar to the Boltzmann $H$-function. The existence and uniqueness theorem for global in time solution of the Cauchy problem for these models is proved. Moreover, it is proved that the solution converges to the equilibrium solution when time goes to infinity. The properties of the equilibrium solution and the connection with solutions of the wave kinetic equation are discussed. The problem of the approximation of the Boltzmann-type equation by its discrete models is also discussed. The paper contains a concise introduction to the Boltzmann equation and its main properties. In principle, it allows one to read the paper without any preliminary knowledge in kinetic theory. Bibliography: 61 titles.
Keywords
Boltzmann-type equations, wave kinetic equation, -theorem, Lyapunov functions, distribution functions, discrete kinetic models, non-linear integral operators, dynamical systems, Boltzmann-type equations, wave kinetic equation, -theorem, Lyapunov functions, distribution functions, discrete kinetic models, non-linear integral operators, dynamical systems
About the authors
Aleksandr Vasil'evich Bobylev
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences; Peoples' Friendship University of Russia named after Patrice Lumumba
ORCID iD: 0000-0001-9348-0864
Candidate of physico-mathematical sciences
References
- R. Alexandre, Y. Morimoto, S. Ukai, Chao-Jiang Xu, Tong Yang, “Smoothing effect of weak solutions for the spatially homogeneous Boltzmann equation without angular cutoff”, Kyoto J. Math., 52:3 (2012), 433–463
- L. Arkeryd, “On the Boltzmann equation. I. Existence”, Arch. Ration. Mech. Anal., 45 (1972), 1–16
- L. Arkeryd, “$L^infty$ estimates for the space-homogeneous Boltzmann equation”, J. Stat. Phys., 31:2 (1983), 347–361
- L. Arkeryd, “A quantum Boltzmann equation for Haldane statistics and hard forces; the space-homogeneous initial value problem”, Comm. Math. Phys., 298:2 (2010), 573–583
- L. Arkeryd, “On low temperature kinetic theory: spin diffusion, Bose–Einstein condensates, anyons”, J. Stat. Phys., 150:6 (2013), 1063–1079
- L. Arkeryd, A. Nouri, “Bose condensates in interaction with excitations: a kinetic model”, Comm. Math. Phys., 310:3 (2012), 765–788
- L. Arkeryd, A. Nouri, “A Milne problem from a Bose condensate with excitations”, Kinet. Relat. Models, 6:4 (2013), 671–686
- А. А. Арсеньев, “Задача Коши для линеаризованного уравнения Больцмана”, Ж. вычисл. матем. и матем. физ., 5:5 (1965), 864–882
- R. Balescu, Statistical mechanics of charged particles, Monographs in Statistical Physics and Thermodynamics, 4, Intersci. Publ. John Wiley & Sons, Ltd., London–New York–Sydney, 1963, xii+477 pp.
- A. V. Bobylev, Kinetic equations, v. 1, De Gruyter Ser. Appl. Numer. Math., 5/1, Boltzmann equation, Maxwell models, and hydrodynamics beyond Navier–Stokes, De Gruyter, Berlin, 2020, xiii+244 pp.
- A. V. Bobylev, C. Cercignani, “Discrete velocity models without nonphysical invariants”, J. Stat. Phys., 97:3-4 (1999), 677–686
- А. В. Бобылев, С. Б. Куксин, “Уравнение Больцмана и волновые кинетические уравнения”, Препринты ИПМ им. М. В. Келдыша, 2023, 031, 20 с.
- A. V. Bobylev, A. Palczewski, J. Schneider, “On approximation of the Boltzmann equation by discrete velocity models”, C. R. Acad. Sci. Paris Ser. I Math., 320:5 (1995), 639–644
- A. V. Bobylev, M. C. Vinerean, “Construction of discrete kinetic models with given invariants”, J. Stat. Phys., 132:1 (2008), 153–170
- Н. Н. Боголюбов, Проблемы динамической теории в статистической физике, Гостехиздат, М.–Л., 1946, 120 с.
- L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekulen”, Wien. Ber., 66 (1872), 275–370
- J. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method”, J. Fluid Mech., 19:3 (1964), 401–414
- H. Cabannes, The discrete Boltzmann equation (theory and applications), Lecture notes given at the University of California, Univ. of California, Berkeley, 1980, viii+55 pp.
- Т. Карлеман, Математические задачи кинетической теории газов, ИЛ, М., 1960, 120 с.
- C. Cercignani, The Boltzmann equation and its applications, Appl. Math. Sci., 67, Springer-Verlag, New-York, 1988, xii+455 pp.
- C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, Appl. Math. Sci., 106, Springer-Verlag, New York, 1994, viii+347 pp.
- S. Chapman, “On the law of distribution of molecular velocities, and on the theory of viscosity and thermal conduction, in a non-uniform simple monatomic gas”, Philos. Trans. Roy. Soc. London Ser. A, 216:538-548 (1916), 279–348
- R. J. DiPerna, P. L. Lions, “On the Cauchy problem for Boltzmann equations: global existence and weak stability”, Ann. of Math. (2), 130:2 (1989), 312–366
- W. Duke, “Hyperbolic distribution problems and half-integral weight Maass forms”, Invent. Math., 92:1 (1988), 73–90
- A. Dymov, S. Kuksin, “Formal expansions in stochastic model for wave turbulence 1: kinetic limit”, Comm. Math. Phys., 382:2 (2021), 951–1014
- R. S. Ellis, M. A. Pinsky, “The first and second fluid approximations to the linearized Boltzmann equation”, J. Math. Pures Appl. (9), 54 (1975), 125–156
- D. Enskog, Kinetische Theorie der Vorgänge in mässig verdünnten Gasen, Almqvist & Wiksells, Uppsala, 1917, vi+160 pp.
- M. Escobedo, J. J. L. Velazquez, On the theory of weak turbulence for the nonlinear Schrödinger equation, Mem. Amer. Math. Soc., 238, no. 1124, Amer. Math. Soc., Providence, RI, 2015, v+107 pp.
- L. Fainsilberg, P. Kurlberg, B. Wennberg, “Lattice points on circles and discrete velocity models for the Boltzmann equation”, SIAM J. Math. Anal., 37:6 (2006), 1903–1922
- А. А. Галеев, В. И. Карпман, “Турбулентная теория слабонеравновесной разреженной плазмы и структура ударных волн”, ЖЭТФ, 44:2 (1963), 592–602
- R. Gatignol, Theorie cinetique des gaz à repartition discrète de vitesses, Lecture Notes in Phys., 36, Springer-Verlag, Berlin–New York, 1975, ii+219 pp.
- D. Goldstein, B. Sturtevant, J. E. Broadwell, “Investigations of the motion of discrete-velocity gases”, Rared gas dynamics: theoretical and computational techniques, Progr. Astronaut. Aeronaut., 118, AIAA, Washington, DC, 1989, 100–117
- Е. П. Голубева, О. М. Фоменко, “Асимптотическое распределение целых точек на трехмерной сфере”, Аналитическая теория чисел и теория функций. 8, Зап. науч. сем. ЛОМИ, 160, Изд-во “Наука”, Ленинград. отд., Л., 1987, 54–71
- H. Grad, “Principles of the kinetic theory of gases”, Thermodynamik der Gase, Handbuch Phys., 12, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1958, 205–294
- E. Grosswald, Representations of integers as sums of squares, Springer-Verlag, New York, 1985, xi+251 pp.
- D. Hilbert, “Begründung der kinetischen Gastheorie”, Math. Anal., 72:4 (1912), 562–577
- R. Illner, T. Platkowski, “Discrete velocity models of the Boltzmann equation: a survey on the mathematical aspects of the theory”, SIAM Rev., 30:2 (1988), 213–255
- H. Iwaniec, “Fourier coefficients of modular forms of half-integral weight”, Invent. Math., 87:2 (1987), 385–401
- М. Кац, Вероятность и смежные вопросы в физике, Мир, М., 1965, 407 с.
- Л. Ландау, “Кинетическое уравнение в случае кулоновского взаимодействия”, ЖЭТФ, 7:2 (1937), 203–209
- Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. 1, Механика, 3-е изд., Наука, М., 1973, 208 с.
- O. E. Lanford, III, “Time evolution of large classical systems”, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, WA, 1974), Lecture Notes in Phys., 38, Springer-Verlag, Berlin–New York, 1975, 1–111
- Е. М. Лифшиц, Л. П. Питаевский, Теоретическая физика, т. 10, Физическая кинетика, Наука, М., 1979, 528 с.
- Ю. В. Линник, Эргодические свойства алгебраических полей, Изд-во Ленингр. ун-та, Л., 1967, 208 с.
- А. М. Ляпунов, Общая задача об устойчивости движения, Дисс. … докт. физ.-матем. наук, Харьк. матем. о-во, Харьков, 1892, 250 с.
- Н. Б. Маслова, А. Н. Фирсов, “Решение задачи Коши для уравнения Больцмана. I”, Вестн. Ленингр. ун-та, 1975, № 19, 83–88
- J. C. Maxwell, “On the dynamical theory of gases”, Philos. Trans. Roy. Soc. London, 157 (1867), 49–88
- D. Morgenstern, “General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell–Boltzmann equation in the case of Maxwellian molecules”, Proc. Natl. Acad. Sci. U.S.A., 40:8 (1954), 719–721
- L. W. Nordheim, “On the kinetic method in the new statistics and application in the electron theory of conductivity”, Proc. Roy. Soc. London Ser. A, 119:783 (1928), 689–698
- A. Palczewski, J. Schneider, A. V. Bobylev, “A consistency result for a discrete-velocity model of the Boltzmann equation”, SIAM J. Numer. Anal., 34:5 (1997), 1865–1883
- V. A. Panferov, A. G. Heintz, “A new consistent discrete-velocity model for the Boltzmann equation”, Math. Methods Appl. Sci., 25:7 (2002), 571–593
- P. Sarnak, Some applications of modular forms, Cambridge Tracts in Math., 99, Cambridge Univ. Press, Cambridge, 1990, x+111 pp.
- А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников, Дифференциальные уравнения, Курс высшей математики и математической физики, 7, Наука, М., 1980, 232 с.
- E. A. Uehling, G. E. Uhlenbeck, “Transport phenomena in Einstein–Bose and Fermi–Dirac gases. I”, Phys. Rev. (2), 43:7 (1933), 552–561
- S. Ukai, “On the existence of global solutions of mixed problem for non-linear Boltzmann equation”, Proc. Japan Acad., 50:3 (1974), 179–184
- V. V. Vedenyapin, “Velocity inductive construction for mixtures”, Transport Theory Statist. Phys., 28:7 (1999), 727–742
- В. В. Веденяпин, Ю. Н. Орлов, “О законах сохранения для полиномиальных гамильтонианов и для дискретных моделей уравнения Больцмана”, ТМФ, 121:2 (1999), 307–315
- C. Villani, “A review of mathematical topics in collisional kinetic theory”, Handbook of mathematical fluid dynamics, v. 1, Noth-Holland, Amsterdam, 2002, 71–305
- А. А. Власов, “О вибрационных свойствах электронного газа”, ЖЭТФ, 8:3 (1938), 291–318
- В. Е. Захаров, “Решаемая модель слабой турбулентности”, ПМТФ, 1965, № 1, 14–20
- E. Zermelo, “Ueber einen Satz der Dynamik und die mechanische Wärmetheorie”, Ann. Phys., 293:3 (1896), 485–494
Supplementary files
