Dolzhenko's inequality for $n$-valent functions: from smooth to fractal boundaries
- Authors: Baranov A.D.1, Kayumov I.R.2,1
-
Affiliations:
- Saint Petersburg State University
- Kazan (Volga Region) Federal University
- Issue: Vol 77, No 6 (2022)
- Pages: 205-206
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/142329
- DOI: https://doi.org/10.4213/rm10086
- ID: 142329
Cite item
Abstract
About the authors
Anton Dmitrievich Baranov
Saint Petersburg State University
Email: anton.d.baranov@gmail.com
Doctor of physico-mathematical sciences, Associate professor
Ilgiz Rifatovich Kayumov
Kazan (Volga Region) Federal University; Saint Petersburg State University
Email: Ilgis.Kayumov@kpfu.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher
References
- Е. П. Долженко, Матем. сб., 69(111):4 (1966), 497–524
- В. В. Пеллер, Матем. сб., 113(155):4(12) (1980), 538–581
- S. Semmes, Integral Equations Operator Theory, 7:2 (1984), 241–281
- А. А. Пекарский, Матем. сб., 124(166):4(8) (1984), 571–588
- Т. С. Мардвилко, А. А. Пекарский, Матем. сб., 202:9 (2011), 77–96
- В. И. Данченко, Изв. АН СССР. Сер. матем., 43:2 (1979), 277–293
- В. И. Данченко, Матем. сб., 187:10 (1996), 33–52
- E. M. Dyn'kin, J. Approx. Theory, 91:3 (1997), 349–367
- E. Dyn'kin, Complex analysis, operators, and related topics, Oper. Theory Adv. Appl., 113, Birkhäuser, Basel, 2000, 77–94
- А. Д. Баранов, И. Р. Каюмов, Изв. РАН. Сер. матем., 86:5 (2022), 5–17
- S. Smirnov, Acta Math., 205:1 (2010), 189–197
Supplementary files
